
 Appendix: Writing external DAVEX commands

DAL Systems 20-Feb-90 Version 1.25

This appendix is for assembly-language programmers. It
explains the format of Davex external commands and the
resources available to them.

Three files are provided that should be "put" (included) by
external commands; these files are in Merlin format and will
have to be modified some if you are using EDASM or some other
assembler. (1) "globals.s" defines entry points and
locations provided by Davex, (2) "apple.globals.s" defines
entry points in the Apple ROM and some locations on zero page
and page 3, and (3) "mli.globals.s" defines ProDOS 8 command
numbers, error codes, and global-page locations.

"xc.s" is the source code for an empty external command; the
best way to start a new command is by making a copy of
"xc.s". Source code for the "du" external command is also
provided as an example.

An external Davex command is assembled to run below $B000.
External commands have a fixed (roughly) ending address to
allow Davex to grow without overlapping previously-assembled
external commands. Command files have filetype $2E,
auxiliary type $8001. (For compatibility with old versions
of Davex, commands may also have filetype BIN.)

External commands can have all the same kinds of parameters
built-in commands can have.

Here is the format for an external command:
$60 (RTS)
$EE
$EE
$xx version # of command ($34 = Version 3.4) (1 byte)
 (recommended: use versions less than 1.0 for
incomplete versions)
$xx mimimum Davex version required (1 byte)
 (use the version number for the Davex you are
working with, unless you're sure your command works with
earlier versions) [see auxiliary version nibble below]
$xx command characteristics (1 byte)
 7: requires 40-col screen
 6: requires 80-col screen
 5: requires //e or IIgs
 4: requires //c
 3: requires IIgs
 2..0: reserved; use 0

2-byte pointer to ASCII description text (or 0)
 Description must be in first 512 bytes of the object
file and must be preceded by a length byte. The
author's name or other identification should appear in

this description for commands not distributed by DAL
Systems. (The 'what' command displays these
descriptions--be sure to test it on your commands.)

load address (2 bytes)
 The address at which this file must be loaded--
typically an exact page boundary that makes the code end
shortly before $B000.

execution address (2 bytes)
 Davex will JSR to the address stored here once the
command is loaded at its load address.

auxiliary minimum Davex version required [v1.22+]
 The low nibble of this byte is an extension of the
"minimum Davex version" byte above. For example, a
command that requires Davex version 1.82 or greater
would have $02 in this byte. (The high nibble of this
byte is reserved and should be 0 for now.)

3 bytes reserved for future extensions of the external
command format (FILL WITH 0)

parameter table (see below) (2p+2 bytes; p=number of
parameters)

 2 bytes for each parameter; then 2 bytes of $00

Davex loads the external command at its load address (after
checking that it would not overlap memory used by Davex).
Davex then evaluates any parameters and calls the command's
execution address AT LEAST once. If the command has any
'wildpath' parameters, Davex expands the wildcards and calls
the command once for each file that matches the wildcard,
without reloading the external command. (Even if your
command does not take wildcards, do not assume that it will
be reloaded whenever it is used: the 'rep' command may
execute your command repeatedly without reloading it.)

When the external command finishes its work, it will normally
RTS back to Davex. (If an error occurs, it might JMP to xerr
or to xProDOS_err instead--see below.)

The parameter table is a list of two-byte entries. A double-
zero entry marks the end of the table. The first byte of
each pair is the option character for one parameter (use 0
for parameters without any associated "-" character). The
second byte is the type.

If one wildcard pathname is allowed, it must be the first
parameter in the table. If two wildcard pathnames are
allowed, they must be the first two parameters in the table--
wildcard matching will take place on the first name, and the
text matching the wildcard will be substituted into the
second parameter whenever a wildcard character appears. All
of the wildcard processing is invisible to external commands.

The option characters in the parameter table must be in lower
case (if they are letters) and must have their high bits on.

Note that all "required" parameters (parameters that are not
associated with a dash and a character) must come before all
other parameters in the table, even though the user no longer
needs to type them in that order.

Also, a required pathname or string parameter may contain zero
characters. From the user's point of view, the parameter is
optional--but it is treated internally as a string with no
characters. The difference is important when your command
decides how to act on the parameter's value.

If you do not want Davex to display each wildcard match
before calling your command, use a NOP as the first
executable byte of your code. Commands that always
incorporate the pathname(s) passed to them into their output
may want to do this. (The 'what' command is a good example.)

Note: When Davex prints a wildcard match, it prints it to
the SCREEN, never to a file or to the printer. If you
command would be useful for printing "tables" of information
(something like 'size' and 'what' do), you will probably want
to use the NOP option and have your command print the
filenames or pathnames itself.

Parameter types (defined in "globals"):
 t_nil no value associated with option character
 t_int1 1-byte integer (Y)
 t_int2 2-byte integer (XY) (X=high, Y=low)
 t_int3 3-byte integer (AXY) (A=highest, Y=lowest)
 t_path ProDOS pathname (AY; X=file type given after
name)
 t_wildpath ProDOS pathname allowing wildcards (AY)
 t_string string value (AY)
 t_yesno y/n (A: 0=no, $80=yes)
 t_ftype file type (A)
 t_devnum device number (A) (example: ".62" = slot 6,
drive 2):
 A=$E0 ($80+$60)

For string and pathname values, a pointer is passed in A and
Y. The data pointed to is a length-prefixed string, suitable
for use in a ProDOS parameter block.

--Resources available to external commands--

External commands may use 'filebuff', 'filebuff2', and
'filebuff3', defined in GLOBALS; each one is $400 bytes long.

32 bytes of zero page are reserved for XCs at 'xczpage'.

The high bit of 'xspeech' is on when a speech synthesizer is
being used.

XCs may use standard Monitor ROM routines for output (but not
for input). The following entry points into Davex are
defined in the Globals file. ASSUME ALL REGISTERED ARE
SCRAMBLED, EXCEPT AS DOCUMENTED BELOW.

xgetparm_n -- get value of parameter number A
Use this subroutine to get the values of required
parameters (ones with a 0 for the first byte of their
pair in the parameter table). Before calling this
routine, load the A register with a parameter number
(the first parameter is 0).

For example, a "rename" command would LDA #0, JSR
xgetparm_n to get the value of the first parameter.
Then it would LDA #1, JSR xgetparm_n to get the value
of the second parameter.

NOTE: When an external command gets control, "LDA #0;
JSR xgetparm_n" has just been done.

xgetparm_ch -- get value of parameter for option char in A
Use this routine to get the value of an optional
parameter (one that has a character in the first byte
of its pair in the parameter table). Load the A
register with the character before calling this
routine. The character should be lowercase (if it's a
letter) and have its high bit ON.

If the parameter in question was not given on the
command line, this routine will return with the carry
flag set (SEC). Otherwise the carry will be clear and
the value of the parameter will be in the appropriate
registers (A,X,Y--see table of parameter types above).

xmess
Prints an inline message--ASCII text, followed by a
$00, follows the JSR to this subroutine.

xprint_ftype
Takes filetype code in A and prints a three-character
filetype name, or $xx if the filetype in not known to
Davex (the lists of known filetypes are stored in the
%config file and in Davex itself, and the "ftype"
command can be used to view and edit the user's list).

xprint_access
Takes a ProDOS access byte and prints:

 rwndIB

Only the letters corresponding to bits set in the
access byte are printed; blanks are printed for the
others (r=read, w=write, n=rename, d=delete,
I=invisible, B=needs backup).

xprdec_2

Prints a 2-byte value in decimal. AY contains the
value (A=high byte). No characters are printed before
or after the number.

xprdec_3
Prints a 3-byte value in decimal. The number must be
stored in xnum (lowest byte), xnum+1 (middle byte),
and xnum+2 (highest byte). No characters are printed
before or after the number.

xprdec_pady
Prints a decimal number from NUM (3 bytes) right-
justified in a field of Y+1 characters

xprdec_pad
Same as xprdec_3, except the number is right-justified
in a field of 7 characters.

xprint_path
Prints (in lowercase) a length-prefixed string pointed
to by AY.

xbuild_local
AY must point to a partial pathname; builds a complete
pathname by appending to the "%" directory name. This
will locate the %config file, for example. Returns AY
pointing to the complete path. (If you call this
routine more than once, note that the same memory will
be used to store the pathname, so the previous name
will be erased.)

xprint_sd
Entry: A=device number; prints: .sd, where s and d
are the slot and drive of the given device number.

xprint_drvr [input functions in Davex 1.25+]
Provides calls to open, close, write, and poll
character devices. Entry: X = function. Other
parameters depend on the function. For convenience,
ProDOS call numbers are used (as defined in
MLI.GLOBALS.S).

Slots are opened -independently- for input and output.
Input is supported for Pascal devices, but not for
parallel cards.

X = mli_open: open a slot for output
 Input: A=slot number (0 for default)
 Output: CLC, A=reference number
 SEC, A=error code (for xProDOS_err)

X = mli_open-$80: open a slot for input
 Input: A=slot number
 Output: CLC, A=reference number
 SEC, A=error code (for xProDOS_err)

X = mli_close: close a slot for output

 Input: Y=reference number
 Output: CLC = successful
 SEC, A=error code (for xProDOS_err)

X = mli_close-$80: close a slot for input
 Input: Y=reference number
 Output: CLC = successful
 SEC, A=error code (for xProDOS_err)

X = mli_write: send a character (7 bits significant)
 Input: A=character to be written
 Y=reference number from the open
 Output: CLC = successful
 SEC, A=error code (for xProDOS_err)

X = mli_write-$80: send a character (all 8 bits
significant)
 inputs and outputs as for mli_write, above

X = mli_read: see if device is ready to accept output
 Input: Y=reference number
 Output: CLC = successful
 Bit 0 of A is 1 if device is ready
to receive
 output; other bits are undefined
 SEC, A=error code (for xProDOS_err)

X = mli_read-$80
 Input: Y=reference number
 Output: CLC, A=character successfully read
 SEC, A=0 if no character ready
 SEC, A>0 if error (for xProDOS_err)

xredirect
 Controls suspension of I/O redirection (multiple
levels of suspension are allowed; one "restore" is
required for each "suspend").

 Input in A:
 0: determine current suspension level
 1: suspend I/O redirection
 -1: ($FF): restore I/O redirection

 Output in A:
 N flag = bit 7 = 1 if output is being redirected
 V flag = bit 6 = 1 if input is being redirected

xpercent
Takes two 3-byte values: one in AXY and one in xnum.
Returns (in A) the percentage that AXY is of xnum (3
bytes).

xyesno
Prints '? (y/n)' and waits for a Y or N to be typed.
Returns:
 No: A=$00, Z flag=1 (BEQ will be taken)
 Yes: A=$80, Z flag=0 (BNE will be taken)

See xredirect notes in xyesno2 description.

xyesno2 [Davex v1.2+]
Just like xyesno, except that the SPACE and RETURN
keys are also accepted. Before calling this routine,
load the A register with a 'y' or an 'n'. If the user
types a SPACE or RETURN, it is translated into the
character you passed.

xyesno2 should be used when there is a clear and safe
default choice at a yes/no question. The default
should never be destructive! If there is no clear
default choice, don't try to outguess the user; just
use xyesno.

To asking a yes/no question, you should call xredirect
with A=1 to suspend any active I/O redirection, print
the prompt, call xyesno or xyesno2, call xredirect
with A=-1 ($FF), and then act on the answer to the
question. If you don't call xredirect, the question
may get printed or sent to a disk file, and the answer
to the question may come from an exec file!

lda #1
jsr xredirect
jsr xmess
asc "Okay to detonate mouse"
dfb 0

lda #"n"
jsr xyesno2

php ;save Z flag for BEQ/BNE
lda #-1
jsr xredirect
plp

beq TheySaidNo
...

xgetln
get an input line and place it in string, [NOT
string2; this was documented wrong before] zero-
terminated (there is also a length byte at string-1).
Returns SEC if input was cancelled by Ctrl-X. This is
the same string that Davex uses for the command line,
so a command that uses this call must preserve and
restore the contents of this buffer [256 bytes
starting at string-1 (this is actually overkill by a
few bytes)]. Note that the up and down arrows *will*
allow the user to scroll through the command history
if this call is used. A BETTER GETLN ROUTINE WILL BE
AVAILABLE IN DAVEX 1.3:

xgetln2 [PLANNED FOR DAVEX 1.3]
Input: AY = address of input buffer (provided by your

command)
 X = length of the buffer
Output: length-prefixed, zero-terminated string in
buffer

xgetln2 reads lines of text from an input device.
Input will often come from the keyboard, but it can
come from an exec file or a peripheral device. If you
want to force input to come from the keyboard, use
xredirect to suspend I/O redirection before calling
xgetln2 and to restore it afterwards. (If you print a
prompt before getting the input, be sure to print the
prompt AFTER suspending I/O redirection.)

Unlike xgetln, the up and down arrows (for history
scrolling) are disabled during xgetln2.

Note that the maximum number of characters in the
input string is two less than the size of the buffer,
since one byte is used for the length of the string
and one $00 byte marks the end of the string.
xgetln2's behavior is undefined if it is called with X
less than 2.

xbell
Sound a warning bell (a ProDOS-style "blat" or a
system "beep", depending on "config -b").

xdowncase
If character in A is a capital letter, changes it into
a lowercase letter (always sets bit 7). X and Y are
preserved; A is preserved or capitalized. This
routine always turns on the high bit of the character
in A.

xplural
Takes two-byte value in AY and prints 's' if the value
is not equal to 1. Let's not have any more "1 files
found" messages!

xcheck_wait
Returns with SEC if the user has pressed ESC. This is
a SOFT ABORT if your command supports it; wildcard
expansion and further command-line processing, if any,
will continue. If the user hits Ctrl-C or Apple-
period, this routine will print "*** aborted" and will
clean up and return to the command prompt.

The user can also PAUSE and single-step the screen by
hitting SPACE. This routine will call poll_io (for
print spooling) while the screen is frozen. Also,
Apple-H will do a screen dump (except on II+).

NOTE: If an external command calls xcheck_wait, it
should do it exactly once per line printed. Test your
command for reasonable behavior by single-stepping the
output with the space bar.

xpr_date_ay
Takes standard ProDOS date word in AY and prints date
in the form dd-mmm-yy. If AY=0, prints "<no date>"
instead. Question marks are printed for any parts of
the date that have illegal values.

xpr_time_ay
Takes standard ProDOS time word in AY and prints time
in the form hh:mm xM. If AY=0, prints blanks instead.

xProDOS_err
Prints ProDOS error message from A and aborts to the
command line. This routine closes any files you
opened (provided you didn't fiddle with LEVEL) and
cleans up the stack. You generally don't have to
worry about cleaning things up.

Input and output redirection are cancelled, but print
spooling is not disturbed.

xProDOS_er
Prints ProDOS error without a bell and returns (does
NOT abort).

xerr
Aborts to Davex's command-line prompt. Use this
routine if you print an error message (with xmess) and
want to abort like xProDOS_err would. (Note that the
error message may be redirected to a file or printer.
You may want to call xredirect with A=1 to suspend I/O
redirection before calling xmess to print the error.)

xpush_level
Prepares to open a new directory level; must be called
before dir_setup is called.

xdir_setup
Opens a new directory level. Call xpush_level first.
Use xread1dir to read entries from the directory.
Call xdir_finish when there are no more entries. On
entry to xdir_setup, A and Y should point to a
complete pathname or a partial pathname RELEATIVE TO
THE PREFIX (compare xdir_setup2).

xdir_setup2 [Davex v1.23+]
Just like xdir_setup, but the pathname pointed to by
AY should be either (1) complete or (2) partial
RELEATIVE TO THE DIRECTORY ALREADY OPEN. This is
useful for commands that traverse a subdirectory
structure, since you can just call this routine with
the directory name.

xdir_finish
Closes the current directory level and re-opens the
previous one, if one was open. To exit normally, you
must call this routine once for each call to

xdir_setup you make. (If you jump to xerr or
xProDOS_err, don't worry about it.)

xread1dir
Reads one entry from the current directory, opened
with xdir_setup. Returns SEC if there were no more
entries in the current directory. The directory entry
is stored at "catbuff".

xpoll_io
Should be called while waiting for keyboard input.
This gives Davex a chance, for example, to send data
from spooled files to the printer. (This routine is
called automatically during xcheck_wait, xrdkey, and
xgetln calls.) A, X, Y, and P are PRESERVED. Also,
xpoll_io increments the two-byte random number on
zero-page ($4E and $4F).

xmmgr
A crude memory manager--allows external commands to
use the space between the end of Davex and the
beginning of the external command. (Assemble external
commands to end as close to $B000 as possible to
maximize this free space.)

Input in X:
 mli_close free all dynamic memory

 mli_open alloc A pages from low mem; SEC=out
of mem; return A=1st page

 mli_read return number of free pages in A, Y=0

 mli_gfinfo return lowest free page number into
A, Y=0

 mli_write set highest available page to A

xpmgr
PathManager: performs common operations on pathnames.
The format of a call is:

 jsr xpmgr
 dfb COMMAND
 dw PARM1 [,PARM2]

COMMAND is one of the following:

 pm_appay
 appends path at AY to path at PARM1

 pm_appch
 appends character in A to path at PARM1

 pm_up
 removes one segment from end of path at PARM1

 pm_slashif
 adds '/' to end of path at PARM1 if it doesn't
already end
 in '/'

 pm_copy
 copies length-prefixed path from PARM1 to PARM2
 [Davex v1.2+!]

xgetnump [Davex v1.1+]
input: none
output: A=number of parameters given for command
 (including all required parameters, even if
they are
 0-length strings or pathnames).
 X and Y are preserved.

xrdkey [Davex v1.1+]
input: character under cursor (normally use a blank =
$A0)
output: key pressed (high bit on).

Call this routine instead of using ROM routines for
input. For example, RDKEY, RDCHAR, and GETLN are not
guaranteed to work correctly. Note that input will
may come from an exec file rather than from the
keyboard, unless you use xredirect to suspend I/O
redirection.

xdirty [Davex v1.1+]
No inputs or outputs. Sets a flag to force Davex to
try to re-save the %config information. (The
attempted re-saving happens before command prompts.)

xprint_ver
input: version number in A; $34 prints "v3.4"
(all registers scrambled)

xfman_open
input: AY points to pathname of a file
output: CLC, A = file reference number
 SEC, A = ProDOS error code

xfman_open and xfman_read provide a way to read text
and AppleWorks Word Processor (AWP) files without
caring which kind of file is which. The resulting
stream of data

Additional filetypes may be interpreted in the future.
In general, these routines perform a reasonable
mapping from some non-text files into a legible
sequentially-readable format.

Warning: Do not attempt to open more than one file at
a time using xfman_open. It is not currently
supported.

xfman_read
input: A=reference number returned from xfman_open
output: CLC, A = character
 SEC, A = ProDOS error code

Returns the next character from a file opened with
xfman_open.
No special way is provided to close a file opened with
xfman_open; close with a ProDOS call if necessary.
This may be inadequate if these file manager routines
are ever enhanced to deal with more than one file open
at a time.

xshell_info [Davex v1.25+]
input: X=request code
output: CLC, requested information in registers/etc.
 SEC, requested information not available

X=0: Get Davex version in A, Y.
 For version $a.bc, A=$ab and Y=$0c.
X=1: Get alias buffer (AY=address, X=size in pages)
X=2: Get history buffer (AY=address, X=size in pages)
X=3: Get internal filetype table (AY=address)
X=4: Get internal filetype name table (AY=address)

--notes--

External commands should not open any files below stdlevel,
which is the current ProDOS file level when the shell
executes an XC. Davex automatically closes any files open at
or above stdlevel when the external command finishes. Davex
guarantees that an XC will be able to open 3 files, but it
does not guarantee any more than that (Davex may have up to 5
files open already [spooling, exec, output redirection to
disk, wildcard expansion and maybe one more in the future];
the ProDOS limit is 8 open files).

When an external command gets control at its execution
address, Davex has just finished calling xgetparm_n for
parameter number 0. So, for example, a command whose first
parameter is a pathname may start out by storing A and Y into
a ProDOS parameter block, since AY will have the address of
the value of the first parameter.

