Toolkit |

SYSTEM UTILITIES

USERS MANUAL

KYAN SOFTWARE INC.
SAN FRANCISCO, CALIFORNIA

TOOLKIT |

SYSTEM UTILITIES

Requires

Kyan Pascal (Version 2.0)

and

an Apple Il with 64K of memory

Copyright 1986
- Kyan Software Inc.
San Francisco, California

TABLE OF CONTENTS

SECTION

PREFACE

A. INTRODUCTION

C

D

Overview
How to Use the System Utilities
Demonstration Programs

. ProDOS UTILITIES LIBRARY

Overview and Routine Summary
Using the ProDOS Ultility Library
Declaring Global Types

Routine Descriptions

. DEVICE DRIVER LIBRARY

Overview and Routine Summary
Using the Device Driver Library
Routine Descriptions

. SCREEN MANAGEMENT LIBRARY

Overview and Routine Summary
Using the Screen Management Library
Routine Descriptions

. OTHER SYSTEM UTILITIES

Overview

Random Number Routines
Conversion Routines

Line Parse Routine
Sort/Merge Routine

. APPENDIX (Disk Directory)

I-11

1-25

SYSTEM UTILITIES TOOLKIT I-1

PREFACE

Notice

Kyan Software reserves the right to make improvements to the
products described in this manual at any time and without notice.
Kyan Software cannot guarantee that you will receive notice of such
revisions, even if you are a registered owner. You should periodically
check with Kyan Software or your authorized Kyan Software dealer.

Although we have thoroughly tested the software and reviewed the
documentation, Kyan Software makes no warranty, either express or
implied, with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any particular
purpose. This software is licensed "as is".

In no event will Kyan Software be liable for direct, indirect, incidental or
consequential damages resulting from any defect in the software or
documentation even if it has been advised of the possibility of such
damages.

Some states do not allow the exclusion or limitation of implied
warranties or liabilities or consequential damages, so the above
limitation or exclusion may not apply to you.

Copyright 1986 by Kyan Software, Inc.
1850 Union Street #183
San Francisco, CA 94123
(415) 626-2080

Kyan Pascal is a trademark of Kyan Software Inc. The word Apple and
ProDOS are registered trademarks of Apple Computer Inc.

SYSTEM UTILITIES TOOLKIT 1-3

PREFACE

Use of Routines in this Toolkit

Kyan Software hereby grants you a non-exclusive license to merge or
use the routines in this Toolkit in conjunction with your own programs
for either private or commercial purposes.

Copyright

This users manual and the computer software (programs) described in
it are copyrighted by Kyan Software Inc. with all rights reserved.

Under the copyright laws, neither this manual nor the programs may
be copied, in whole or part, without the written consent of Kyan
Software Inc. The only legal copies are those required in the normal
use of the software or as backup copies. This exception does not
allow copies to be made for others, whether or not sold. Under the
law, copying includes translations into another language or format.

This restriction on copies does not apply to copies of individual
routines copied and distributed as an integral part of programs
developed by the purchaser of this Toolkit.

Backup Copies

We strongly recommend that you make and use backup copies of the
Toolkit diskette. Keep your original Kyan diskettes in a safe location in
case something happens to your copies. (Remember Murphy is
alive and well, and he loves to mess with computers!)

Copy Protection

Kyan Software products are not copy-protected. As a result, you are
able to make backup copies and load your software onto a hard disk or
into a RAM expansion card. We trust you. Please do not violate our
trust by making or distributing illegal copies.

-4 SYSTEM UTILITIES TOOLKIT

PREFACE

Limited Warranty

Kyan Software warrants the diskette(s) on which the Kyan software is

furnished to be free from defects in materials and workmanship under
normal use for a period of ninety (90) days from the date of delivery to
you as evidenced by your proof of purchase.

Disclaimer of Warranty -- Kyan Software Inc.

Except for the limited warranty described in the preceding paragraph,
Kyan Software makes no warranties, either express or implied, with
respect to the software, its quality, performance, merchantability or
fitness for any particular purpose. This software is licensed "as is".
The entire risk as to its quality and performance is with the Buyer.
Should the software prove defective following its purchase, the buyer
(and not Kyan Software, its distributors, or its retailers) assumes the
entire cost of all necessary servicing, repair, or correction and any
incidental, or consequential damages.

In no event, will Kyan Software be liable for direct, or indirect,
incidental, or consequential damages resulting from any defect in the
software even if it has been advised of the possibility of such
damages. The sole obligation of Kyan Software Inc. shall be to make
available for purchase, modifications or updates made by Kyan
Software to the software which are published within one year from
date of purchase, provided the customer has returned the registration
card delivered with the software.

Some states do not allow the exclusion or limitation of implied
warranties or liabilities for incidental or consequential damages, so the
above limitations or exclusions may not apply to you.

It any provisions or portions of this Agreement shall be held by a court
of competent jurisdiction to be contrary to law, the remaining
provisions of this Agreement shall remain in full force and effect. The
validity, construction and performance of this Agreement shall be
governed by the substantive law of the State of California.

This Agreement constitutes the entire agreement between the
parties concerning the subject matter hereof.

SYSTEM UTILITIES TOOLKIT -5

PREFACE

Technical Support

Kyan Software has a technical support staff ready to assist you with
any problems you might encounter. If you have a problem, we
request that you first consult this users manual.

If you have a problem which is not covered in the manual, our support
staff is ready to help. If the problem is a program which won't compile
or run, we can best help if you send us a description of the problem
and a listing of your program (better yet, send us a disk with the listing
onit). We will do our best to get back to you with an answer as quickly
as possible.

If you question can be answered on the phone, then give us a call.
Our technical staff is available to assist on Monday through Friday
between the hours of 3 AM and 5 PM, West Coast Time. You may
reach them by calling:

Technical Support: (415) 626-2080

Suggestion Box

Kyan Software likes to hear from you. Please write if you have
sugges-tions, comments and, yes, even criticisms of our products.
We do listen. It is your suggestions and comments that frequently
lead to new products and/or product modifications.

We encourage you to write. To make it easier, we have included a
formin the back of this manual. This form makes it easier for you to
write and easier for us to understand and respond to your comments.
Please let us hear from you.

Mailing Address: Kyan Software Inc.
1850 Union Street #183
San Francisco, CA 94123

-6 SYSTEM UTILITIES TOOLKIT

A. Introduction

Thank you for purchasing this System Utilities Toolkit. Itis designed
for use with Kyan Pascal (Version 2.0 or later) and an Apple // with at
least 64K of memory (RAM).

Overview

The Toolkit contains many useful and powerful routines which can be
merged directly into your Kyan Pascal programs. These routines are
grouped into four libraries or directories.

l roD tility Libr

This library contains routines which provide support for various
ProDOS functions and procedures from within Pascal programs.

o Delete o Rename o Copy o SetPrefix
o Append o lock o Unlock o MakeDir

o RemDir o Find o ScanfFile o FileType

o GetDir o GetPrefix o Format o GetTime
o GetDate o FindClock o SetDate o PrtMLlerror
o BSave o BlLoad 0 SetTime o GetTimeM
o PrintFile

Dri ibr

This library contains functions and procedures which establish
communication between your application programs and an external
device (i.e., mouse, joystick or trackball).

o FindMouse o InitMouse o MouseClick o MouseHeld

o MouseMoved o MouseX o MouseY o ZerMouse
o SetMouseXY o SetXBounds o SetYBounds o HomeMouse
o EndMouse o0 PriMouseChar o Button0 o Button1

o JoyStX o JoyStY

SYSTEM UTILITIES TOOLKIT 1- 7

INTRODUCTION

Il. _Screen Management Library

This library contains routines used to control screen functions.

o CLS o GoToXY o TAB o Inverse

o Normal o ScrollUp o ScrollDown o ClrLine

o CIrEOLN o CIrEOP o Colso o CursorX

o CursorY o GetChar o ScrnTop o ScrnBottom
o ScrnFull o IDMachine o ON40 o ON8O

v ther t tiliti

o Random Number Routines
-- Seed ("seed" the random number generator routine)
-- Rnd (return a random number between 0 and 1)
-- Random (return a random number in range [min .. max])

o Conversion Routines

-- Integer to String -- Real Number to String
-- String to Real Number -- String to Integer

o Line Parsing Routine

o Sort/Merge Routine

- 8 SYSTEM UTILITIES TOOLKIT

INTRODUCTION

How to Use the System Utilities

The routines in each Library are text files and are structured to be
used as "include" files in your Pascal programs. To use them:

1. Copy the desired Toolkit routine(s) into your current
working directory.

2. Declare the "included" file(s) in the declarations
portion of your program.

3. Call the routine(s) as required in the body of your program.

Some libraries require global types to be separately declared. The

steps for declaring these global types are described later in this
Manual.

While most of the Toolkit routines are independent of all others, some
routines incorporate others in the body of their programs. In these
circumstances, it is necessary to include both Toolkit routines in your
Pascal program. If a routine is dependent on some other routine, the
dependency is noted in the application notes for the routine.

Itis a good idea to review the section in Chapter Il of your Kyan Pascal
manual which describes the use of "include” files in your Pascal
programs. You should also look at Chapter V which describes
assembly language programming and Appendices C-F which list the
meaning of MLI and other error messages.

You are encouraged to examine the source code of the Toolkit
routines. To do so, simply load the routine's include file using the
Kyan Text Editor. The source files are fully commented, and so you
should be able to easily follow the logic and flow of the program. You
can also modify any of the routines, if desired, and customize them for
your particular application.

The Appendix illustrates the directory and file organization of the
System Utilities Toolkit disk. Always be sure to specify the complete
pathname of the include file when you are copying routines into your
working directory or running the demonstration programs. Also, when
running the demo programs, be sure there is a copy of the Kyan
Pascal Runtime Library (LIB) in the working directory.

SYSTEM UTILITIES TOOLKIT |- 9

INTRODUCTION

Demonstration Programs

The System Utilities Toolkit contains a number of demonstration
programs which illustrate the use of Toolkit routines. Most of these
programs are included in both source and object code formats.

e

DESCRIPTION

CATALOG.P

MOUSE.DEMO.P

RANDOM.DEMO.P

ESORT.DEMO.P
MERGE.DEMO.P
MOUSETEXT.DEMO

TURTLE.DEMO

This program will print a short catalog of the
directory you indicate. It will list each file and
its type and size (in blocks). This program
demonstrates the ProDOS utilities.

Uses the Mouse routines in conjunction with
a simple menu application interfaced to the
mouse. This program demonstrates Device
utilities.

Play a simple random number game. This
program demonstrates seeding of the
random number generator.
Demonstrates the Sort routine.
Demonstrates the Merge routine.

(Object code only). Displays the procedure
and complete table of mouse text characters.

(Object code only). lllustrates the power of
Kyan's TurtleGraphics Toolkit.

I- 10 SYSTEM UTILITIES TOOLKIT

B. ProDOS Utility Library

Overview

The ProDOS Utility Library contains 26 different routines. They
include a mix of functions and procedures which can be incorporated
into your Pascal programs. Each ProDOS utility routine is described
on following pages.

The ProDOS routines included in this Library are:

Append BLoad
BSave Copy
Delete Filesize
Filetype Find
FindClock Format
GetClock GetDate
GetDir GetPrefix
GetTime Lock
MakeDir PrintFile
PriMLlerror RembDir
Rename ScanFile
SetClock SetDate
SetPrefix SetTime
Unilock

The ProDOS routines are listed in alphabetical order.

SYSTEM UTILITIES TOOLKIT 1- 11

ProDOS UTILITY LIBRARY

Using the ProDOS Utility Library

To use the ProDOS Utility routines, you must first declare a set of
global types and then "include” the desired routine after the variable
and type declarations in your Pascal program. (Please refer to
Chapter |ll of the Kyan Pascal User Manual for more information about
the use of Include files in Pascal programs.) Once a routine is
included, it can be called as often as needed in your program.

Declaring Global Types

You can declare the global variables in either of two ways. First, you
can simply type the following global declarations into your Pascal
program:

Type
FileString = ARRAY [1..16] of CHAR;
PathString = ABRRAY [1..65] of CHAR;
FilePointer = AFileRecord;
FileRecord = RECORD
Filename : FileString;
NextFile : FilePointer
END;

Alternately, you can “include" the file on the program disk called
PRODOS.TYPES.I in your Pascal program using the following
format:

Type
#i PRODOS.TYPES.|

Both methods acheive the objective of declaring the global types
used in the ProDOS Utility Library routines.

I- 12 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Notes

1. Don't forget to place a copy of ali the files "included" in your Pascal
program in the same working directory as the main program. If you
forget, the compiler will not be able to find the file and a "File Not
Found" compiler error will occur.

2. There are no global types to be declared with Device Driver
routines.

3. The Utility program disk contains a set of sample programs. The
program file CATALOG.P demonstrates the ProDOS utilities.

4. All of the ProDOS Utility Library routines are similar in that: (1) each
ProDOS Function returns the MLI error code of its operation; and,
(2) alt pathnames passed must be padded with spaces to the right.

SYSTEM UTILITIES TOOLKIT |- 13

ProDOS UTILITY LIBRARY

Command Name: Append

Syntax: FUNCTION APPEND(VAR sourcepath, addpath :
PathString) : INTEGER,;

Description: Append the contents of "sourcepath” to “"addpath”.
Type checks are not made; the user must do this first using the
FILETYPE function included in this toolkit. A 512-byte local buffer is
used for the data transfer area.

AREREERRANAAARNAARANR AN NARAARAAN

Command Name: BinarylLoad

Syntax: FUNCTION BLOAD (VAR pathname : PathString;
len, dest : INTEGER) : INTEGER,;

Description: Load the first “len” bytes of a BINary image named
"pathname” starting at "dest”. If "len” is zero, the entire file is loaded.
For Example: To load a hi-resolution graphics image into page 1 of
hi-res memory, the command BLOAD(name, 8192, 8192) would be
used since the image length is 8192 bytes long (‘len’) and hi-res page
1" starts at memory location 8192 ($2000) ('dest’). If the image had
been saved with a length of 8192 previously, the command
BLOAD(name,0,8192) would perform the same opereation since a
lentgth specification of zero loads the entire binary file into memory.

NhRARARRRREARRA AR ARARAA R RN AN A AR R

Command Name: BinarySave

Syntax: FUNCTION BSAVE (VAR pathname : PathString;
len, dest : INTEGER) : INTEGER,;

Description: Save a BiNary image named "pathname" starting at
“dest” of "len" bytes in length. For example: To save a hi-
resolution graphics image stored in hi-res page 1, the command
BSAVE(name, 8192, 8192) would store a binary image of the first
8192 bytes it found (len of 8192) starting at location 8192 ($2000)
(star) into file 'name’.

- 14 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: Copy

Syntax: FUNCTION COPY(VAR sourcepath, destpath : PathString):
INTEGER,;

Description: Copy the file designated by "sourcepath” to the file
designeated by "destpath”. The destination filename already exists, it
is destroyed before the copy begins. COPY uses a 512-byte buffer in
which to perform the data transfer. The volumes involved in the copy

function must both be on-line at the time of the COPY. COPY will not
ask for volumes to be inserted and removed.

ARERAAAAANARARARNANR AR AARRAARR AR NN

Command Name: Delete

Syntax: FUNCTION DELETE(VAR pathname:PathString):
INTEGER;

Description: Delete the file designated in "pathname”. Error
codes are returned as Integers

RERRRRRAERRRARRARAAN AR AR R AR R AR k&

Command Name: FileSize

Syntax: FUNCTION FILESIZE (VAR pathname : PathString;
VAR fsize : INTEGER,) : INTEGER;

Description: Set FSIZE to the number of disk blocks occupiedby
“pathname” (i.e. return size of file in blocks).

SYSTEM UTILITIES TOOLKIT I- 15

ProDOS UTILITY LIBRARY

Command Name: FileType

Syntax: FUNCTION FILETYPE (VAR pathname : PathString;
VAR ftype : INTEGER) : INTEGER;

Description: Set FTYPE to the file type of "pathname” (i.e. return
type of file).

hRAAIARRRRRARARNRARN AR R R AR A AR N Ak R

Command Name: Find

Syntax: FUNCTION FIND (VAR filename : PathString;
VAR found : BOOLEAN) : INTEGER,;

Description: Returns "found" TRUE if the file name passed is

located in the system prefix (Working Directory). Only the Working
Directory is searched.

WARRRARRARRRRRRANRRARARRRRRR AR AN

Command Name: FindClock
Syntax: FUNCTION FINDCLOCK : INTEGER;

Description: Returns the slot number of a ThunderClock or
compatible Apple 1l clock card. If there is no compatible clock in the
system, the number returned is zero. A ThunderClock is recognized
by the following identification bytes:

LOCATION VALUE
Cx00 8

Cx01 $27
Cx02 $28

where "x" is the slot number of the card.

I- 16 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: Format

Syntax: FUNCTION FORMAT (slot, drive : INTEGER; volname :
FileString; VAR fmterror : INTEGER) : INTEGER;

Description: Format the volume in (slot#, drive#) and name the
new volume "volname". If a format error occurs, an MLI error code or
one of the following code numbers (fmterror) will be returned

$27 - Disk access error
$33 - Drive too slow
$34 - Drive too fast

If an error occurs during the writing of a boot block or construction of
the Volume Bit Map, it is returned as the function value. The volume
name specified must conform to pathname guidelines and begin with
a'/', or an "INVALID PATHNAME" will be returned as the function
value.

Due to the size of the FORMAT routine, it must be loaded from disk
each time it is used. A file named FORMAT.OBJ is included in the
ProDOS utilities directory on your diskette. This file must be located
in the Working Directory when the FORMAT routine is called.

FORMAT.OBJ is BLOADed into memory at location $2000 and
requires the use of HiRes graphics page 1. For this reason, any
program using the FORMAT function must begin with the following
code:

#A
_UsesHires
#

The "_UsesHires" declaration tells the compiler not to allocate any
memory between locations $2000 and $3FFF to any part of the
Pascal program or runtime environment. (Please refer to your Kyan
Pascal manual for more information).

Declaring a Pascal program to be a "_SystemFile" does not effect the
FORMAT routine.

SYSTEM UTILITIES TOOLKIT |- 17

ProDOS UTILITY L IBRARY

Command Name: GetClock

Syntax: PROCEDURE GETCLOCK (VAR mon, day, yr, hr, min,
weekday, sec, millisec: INTEGER);

Description: Returns readings from Thunderclock. If no clock is
present, the values returned are undefined. The FINDCLOCK
function must be called previous to this procedure.

AAARATARARAR R AT AR AR ARA AR R ARk khhd

Command Name: GetDate

Syntax: PROCEDURE GETDATE (VAR day, month, year
- INTEGER);

Description: Returns the day (0..31), month (0..12) and year
(00..99) as integers. (NOTE: The function FindClock must always
be called before a GetDate or SetDate procedure is used. Without
this call, these routines will not know there is a clock card in the
system.)

hhkhhkhkhkNhkhkhkhhhhhhhhhhhkhdhkhhhhhhkd

Command Name: GetDirectory

Syntax: FUNCTION GETDIR (VAR dirname : PathString;
VAR ListPtr : FilePtr) : INTEGER;

Description: Returns a linked list of filenames in "dirname”. The list
is terminated by a NIL. If the directory is located but empty, LISTPTR
returns pointing at NIL. If the MLI return code is non-zero, LISTPTR
will be undefined.

- 18 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: GetPrefix

Syntax: PROCEDURE GETPREFIX (VAR prefix : PathString) ;
Description: Returns the current system prefix (Working
Directory). "Prefix" returns with the first 64 characters the system

prefix; the remainder is buffered by spaces. If the system prefix is null,
the returned array contains only blanks.

TR ARRAARAEARAARE AR RRA AR R AR AN

Command Name: GetTime
Syntax: PROCEDURE GETTIME (VAR hour, minute: INTEGER);

Description: Returns the system time in hour/minute military format

KRAARARR AR AR A ANAACR AR AR AR AN

Command Name: Lock

Syntax: FUNCTION LOCK (VAR pathname : PathString) :
INTEGER,;

Description: Deny Write, Delete, and Rename access to the file
designated in the "pathname”.

SYSTEM UTILITIES TOOLKIT 1- 19

ProDOS UTILITY L IBRARY

Command Name: MakeDirectory

Syntax: FUNCTION MAKEDIR (VAR dirname : PathString) :
INTEGER;

Description: Create a directory named "dirname”. The directory is
created as a linked subdirectory type.

ARRARARRR AR A RRAARA AN A AN AR kAR A RA R

Command Name: PrintFile

Syntax: PROCEDURE PRINTFILE (pathname : PathString;
Slot, LeftMargin, RightMargin, TopMargin, BottomMargin, CPI:
INTEGER; header : FileString) : INTEGER;

Description: Print the text file designated by "pathname” to the
printer in "slot” using margins listed. Header is the printer
conditioning control codes. If an "include" file is encountered in the
text file, an attempt is made to find and print the included file. If it fails,
itis ignored and an MLI code is returned which corresponds to an
error caused by the pathname specified and NOT the include files.
The printer must be on-line and at top of form when this procedure is
called.

ARRRARARANANNARARR N AR AR R AR R AR AAR

Command Name: PrintMLlerror

Syntax: PROCEDURE PRTMLIERROR (errorcode : INTEGER);

Description: Print the MLI error code passed at current cursor
position. Unknown error codes are printed as "PRODOS ERROR
$xx" where xx is the hexidecimal error code. The error text is printed
from the current position of the cursor and NO carriage return is
generated by the output routine.

i- 20 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: RemoveDirectory

Syntax: FUNCTION REMDIR (VAR dirname : PathString) :
INTEGER,;

Description: DELETE the directory "dirname”, first checking to
make sure that "dirname" is an empty directory. If "dirname” is not
empty, a "File Access Error” will be returned.

RERKRRRAARRRARNARARR AR A AN AR AR AR Aok

Command Name: Rename

Syntax: FUNCTION RENAME (VAR oldpath, newpath : PathString) :
INTEGER,;

Description: Rename the file defined by "oldpath” with the name
defined by "newpath”. The files must be in the same directory for the
rename to succeed.

ARARENRERRNARRARAR A AN R AR AR A ARk hk

Command Name: ScanFile

Syntax: FUNCTION SCANFILE (VAR pathname, string : PathString;
VAR position : INTEGER) : INTEGER;

Description: Scan the TEXT file designated in "pathname" for the
string designated in "string”. If the string is found, "position" returns
the byte number of the file position of the first character in the string
which matchs. If no match is found, "position” returns a value of-1.
The SCANFILE search is NOT case sensitive. This command is useful
for searching identification fields stored in text files (e.g., high score
files).

SYSTEM UTILITIES TOOLKIT |- 21

ProDOS UTILITY LIBRARY

Command Name: SetClock

Syntax: FUNCTION SETCLOCK(Month, Day, Year, Hours, Minutes,
Dayofweek: INTEGER):INTEGER;

Description: Set the ThunderClock peripheral card to the values
passed. The ThunderClock or compatible card must be write enabled
for the setting to succeed. The function values returned are:

Code Error Description

0 No error

1 Month not in 0..59

2 Day not in range according to month
3 Year not 86..99

4 Hour4 not in range 0..59

If an error occurs no time change takes place. The FINDCLOCK
function must be called previous to this function.

AhRRARRAARAEANRAEAREA AR RSN AR h ke d

Command Name: SetDate

Syntax: FUNCTION SETDATE (day, month, year:
INTEGER): INTEGER,;

Description: Set the system date to the value specified by the
user. Error codes may be returned which correspond to an out-of-
bounds value:

Emor Description

No error

Month is not between 1 and 12

Day is out of range (according to month
passed)

Year is not between 86 and 99

w M—BOE

If an error occurs, no date change takes place. (NOTE: The function
FindClock must always be called before either the SetDate or GetDate
procedure is used. Without this call, the these routines will not know
there is a clock card in the system.)

|- 22 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: SetPrefix

Syntax: FUNCTION SETPREFIX (VAR newprefix : PathString) :
INTEGER,;

Description: Set the system prefix (or Working Directory) to the

pathname specified. If the pathname is all blanks, the system
prefix is set to the root volume (null)

AR AR ARR AN N AR AR A A Ak Rk hhd

Command Name: SetTime

Syntax: FUNCTION SETTIME (hours, minutes : INTEGER) :
INTEGER,

Description: Set the system time to the values passed. If an error
occurs, the function values returned are:

Code Error Description

0 No error

1 Hour is not in range 0..23
2 Minute is not in range 0..59

If an error occurs, no time change takes place.

WRARRRARARRAAARARA R RN AR AN A AR Ahh

Command Name: Unlock

Syntax: FUNCTION UNLOCK(VAR pathname : PathString) :
INTEGER,;

Description: Reverse the effects of the LOCK function.

SYSTEM UTILITIES TOOLKIT - 23

C. Device Driver Library

Overview

The routines in the Device Driver Library allow you to link external
devices to your Pascal programs. The routines are intended for use
with a mouse, trackball (which behave exactly like a mouse), or
joystick.

It you are planning a major project using mouse routines, you should
look at Kyan's MouseText Toolkit. The routines in this System
Utility Toolkit are quite primitive in comparison. The MouseText
Toolkit provides all of the macros needed for windows, pull-down
menus, option selection via mouse, and icon manipulation.

A mouse interface works best when it is "interrupt driven”, that is,
when the programmer sets up a series of routines which the mouse
firmware (i.e., the ROM's on the Mouse card) calls as events occur.
The routines in this Toolkit are not interrupt driven. Instead, the
program must continuously poll the device status to determine when
a condition changes. This method is less efficient than the interrupt
technique but is also much easier to use in small Pascal programs.
You can look at the Mouse Demo program (described on the next
page) to see a practical method for interfacing the mouse with your
program.

For a complete discussion of mouse firmware and the interface
between mouse firmware and your Apple I, please refer to the
documentation which you received with your mouse.

The routines in the Device Driver Library are:

Button0 Button1 EndMouse
FindMouse HomeMouse InitMouse
JoyStkX JoyStkY MouseClick
MouseHeld MouseMoved MouseX
MouseY PrtMouseChar SetMouseXY
SetXBounds SetYBounds ZerMouse

SYSTEM UTILITIES TOOLKIT |- 25

DEVICE DRIVER | IBRARY

Using the Device Drive Library

To use the Device Driver routines, you must first "include"” the desired
routine after the variable and type declarations in your Pascal program.
(Please refer to Chapter il of the Kyan Pascal User Manual for more
information about the use of Include files in Pascal programs.) Once
the routine is included, you can call it as often as needed in your
program.

Notes

1. Don't forget to place a copy of all the files "included” in your Pascal
program in the same working directory as the main program. If you
forget, the compiler will not be able to find the file and a "File Not
Found" compiler error will occur.

2. There are no global types to be declared with Device Driver
routines.

3. The program disk contains a set of sample programs. The program
file Mouse.Demo.P demonstrates the use of mouse routines in
conjunction with TurtleGraphics. You can use the Kyan Pascal editor
to examine the source code and to see how the device routines can
be utilized in your own programs.

4. The use of any mouse routine requires FUNCTION FINDMOUSE to
be in the host program. Also, PROCEDURE INITMOUSE must be
loaded and called before any other mouse routines are used.

|- 26 SYSTEM UTILITIES TOOLKIT

DEVICE DRIVER LIBRARY

Command Name: Button0
Syntax: FUNCTION BUTTONO : BOOLEAN;

Description: This function returns the value TRUE if button 0 or
the Open-Apple Key is pressed.

AARRIRRRARIEAARRRARRAANARAA AR AR AR Rk d

Command Name: Button1

Syntax: FUNCTION BUTTON1 : BOOLEAN;

Description: This function returns the value TRUE if button 1 or
the Closed-Apple Key is pressed.

BARRRRRRRARARRRAAARRAARR AR AR AR b hd AR

Command Name: EndMouse
Syntax: PROCEDURE ENDMOUSE;

Description: This procedure disables the mouse system
interrupts.

SYSTEM UTILITIES TOOLKIT 1- 27

DEVICE DRIVER LIBRARY

Command Name: FindMouse

Syntax: FUNCTION FINDMOUSE : INTEGER;

Description: This function returns the slot number of the mouse
card. If none is present, FINDMOUSE will return a zero and all other
calls to mouse routines will be ignored. The FINDMOUSE function

must be called in every program using mouse routines (along with the
INITMOUSE procedure).

ARRRARARRARAAAARRARA SRR AR R AN R AR A RN

Command Name: HomeMouse
Syntax: PROCEDURE HOMEMOUSE;
Description: This procedure moves the mouse X,Y coordinates to

their lowest boundaries as defined by the SetXBounds and
SetYBounds routines.

AANARRE N AR AR ARN NN AR RS ARk Ak kN

Command Name: InitializeMouse
Syntax: PROCEDURE INITMOUSE;

Description: This procedure prepares the mouse firmware for use.
It sets the X, Y lower and upper bounds to 0 and 1023 and disables
the mouse firmware interrupts. INITMOUSE must be called before any
other mouse routines are used (the FINDMOUSE procedure must
also be called as part of initializing the mouse routines).

- 28 SYSTEM UTILITIES TOOLKIT

DEVICE DRIVER LIBRARY

Command Name: JoyStickX
Syntax: FUNCTION JOYSTX : INTEGER;

Description: This function returns a value between 0 and 255 for
the joystick X coordinate (paddie 0).

RENAAAARRRAFARARAARANRRA AN A AN R R AN AR AR

Command Name: JoyStickY
Syntax: FUNCTION JOYSTY : INTEGER;

Description: This function returns a value between 0 and 255 for
the joystick Y coordinate (paddle 1).

AARRRRRRARRANRENARRAR DA RRNRAEAARAR A AR

Command Name: MouseClick
Syntax: FUNCTION MOQUSECLICK : BOOLEAN:

Description: This function returns the value TRUE is the mouse
button is down.

SYSTEM UTILITIES TOOLKIT |- 29

DEVICE DRIVER LIBRARY

Command Name: MouseHeld
Syntax: FUNCTION MOUSEHELD: BOOLEAN;

Description: This function returns the value TRUE if the mouse
button has been down since the last reading of its status.

AAANEARRARRRREAAR AR A AR AN A AR R AN R AL

Command Name: MouseMoved
Syntax: FUNCTION MOUSEMOVED : BOOLEAN;

Description: This function returns the value TRUE if the mouse's
position has changed since the last reading of its status.

AARRRERARRANERRRRAA R AR A AR AR A A AR R AR Ad

Command Name: MouseX
Syntax: FUNCTION MOUSEX : INTEGER;

Description: This function returns the value of the mouse's X
coordinate (0 thru 1023).

I- 30 SYSTEMUTILITIES TOOLKIT

DEVICE DRIVER LIBRARY

Command Name: MouseY
Syntax: FUNCTION MOUSEY : INTEGER:

Description: This function returns the value of the mouse's Y
coordinate (0 thru 1023).

TRRAARRAARAAARARAR AR NN RRRRR AR R AN AR A Ak

Command Name: PrintMouseCharacter
Syntax: PROCEDURE PRTMOUSECHAR (ch:CHAR);

Description: This procedure prints the character passed as a
mouse character at the current cursor position.

AARARARARRAR A AR N AR SR A RN AR A AN AR AR AR

Command Name: SeitMouseXY
Syntax: PROCEDURE SETMOUSEXY (x,y:INTEGER);

Description: This procedure sets the mouse firmware coordinates
to the values x and y.

SYSTEM UTILITIES TOOLKIT 1- 31

DEVICE DRIVER LIBRARY

Command Name: SetXBounds
Syntax: PROCEDURE SETXBOUNDS (xmin, xmax : INTEGER);

Description: This procedure sets the upper and lower bounds for
the X coordinate.

WRRANRRARNRRRAAN R NN A AR A RR R AN R AR Ak

Command Name: SetYBounds
Syntax: PROCEDURE SETYBOUNDS (ymin, ymax : INTEGER):

Description: This procedure sets the upper and lower bounds for
the Y coordinate.

KANARRAANR AR AR AR RRA NN RRAARNRAAR AN A Ad

Command Name: ZeroMouse
Syntax: PROCEDURE ZERMOUSE:;

Description: This procedure zeroes the X,Y mouse coordinates on
firmware.

I- 32 SYSTEM UTILITIES TOOLKIT

D. Screen Management
Library

Overview

The Screen Management Library contains 20 different routines.
They include a mix of functions and procedures which can be
incorporated into your Pascal programs. Each Screen Management
routine is described on following pages.

The Screen Management routines included in this Library are:

CLREOLN (Clearto end of line)

CLREOP (Clear to end of page)
CLRLINE (Clear line)

CLS (Clear screen)

CcOoL80 (Check for 80 column card)
CURSORX (Return X position of cursor)
CURSORY (Return Y position of cursor)
GETCHAR (Return keypress character)
GOTOXY (Move cursor to coordinates X,Y)
IDMACHINE (Return machine ID information)
INVERSE (Set inverse mode)

NORMAL (Set video to normal)

ON40 (Enable 40 column display)
ON80 (Enable 80 column display)
SCROLLDOWN (Scroll down 1 line)
SCROLLUP (Scrollup 1 line)
SCRNBOTTOM (Set bottom screen margin)
SCRNFULL (Return display to full size)
SCRNTOP (Set top screen margin)

TAB (Move cursor to position X)

SYSTEM UTILITIES TOOLKIT 1- 33

SCREEN MANAGEMENT LIBRARY

Using the Screen Management Library

To use the Screen Management routines, you must first "include" the
desired routine after the variable and type declarations in your Pascal
program. (Please refer to Chapter lil of the Kyan Pascal User Manual
for more information about the use of Include files in Pascal
programs.) Once the routine is included, you can call the routines as
often as needed in your program.

Notes

1. Don't forget to place a copy of all the files "included” in your Pascal
program in the same working directory as the main program. If you
forget, the compiler will not be able to find the file and a "File Not
Found" compiler error will occur.

2. There are no global types to be declared with Screen Management
routines.

3. The Screen Management routines use the following convention:

Cursor X position: 0 thru 39 (0 thru 79 in 80 column mode)
Cursor Y position: 0 thru 23

- 34 SYSTEM UTILITIES TOOLKIT

SCREEN MANAGEMENT LIBRARY

Command Name: Clear to End of Line
Syntax: Procedure CLREOLN;

Description: Clear from the cursor to the end of the line.

RAARRARARRAAAARAAN R AR RARRAARAARAN

Command Name: Clear to End of Page

Syntax: Procedure CLREOP;

Description: Clear from the cursor to the end of the page.

AARRARAAAEANAAAARAANAR A RS A AR N AR Rk

Command Name: Clear Line
Syntax: Procedure CLRLINE;

Description: Clear horizontal line y. Cursor does not move.

L2232 22222322222 124322322222 2233

Command Name: Clear Screen
Syntax: Procedure CLS;

Description: Clear the current text display.

SYSTEM UTILITIES TOOLKIT |- 35

SCREEN MANAGEMENT LIBRARY

Command Name: Column 80
Syntax: Function COL80 : Boolean;

Description: Returns the value TRUE if the 80 column firmware is
active.

AARARRERARAIRARRARAR AR A AR Ak kb d

Command Name: Cursor X Position
Syntax: Function CURSORX : Integer;

Description: Return the X (horizontal) position of the cursor.

RERRRANNRRARERRRRNRRR A KRR A RA A AR A AN R

Command Name: Cursor Y Position
Syntax: Function CURSORY : integer;

Description: Returns the Y (vertical) position of the cursor.

ARARAKAAARARRAN R AN KRR AR R AN A AR T hA ok

Command Name: Get Character
Syntax: Function GETCHAR : Char;

Description: Wait for a keypress and then return it as a character.

I- 36 SYSTEM UTILITIES TOOLKIT

SCREEN MANAGEMENT LIBRARY

Command Name: Go To Position X,Y
Syntax: Procedure GOTOXY (x,y : integer);

Description: Move the cursor to screen coordinates (X,Y). If the
values passed are out of the range of the current screen (for example
an x coordinate of 65 while in forty column mode), the command is
ignored.

Notes:

1. Be sure to use this GOTOXY routine and not any previously
published versions. This routine automatically recognizes the four
different versions of the Apple Il and treats the firmware accordingly.

2. GOTOXY (0,0) moves the cursor to the top left corner of the
screen.

TRAARRREAAARAARR RN AR AR R AR R AR AN A Ah

Command Name: Identify Hardware Configuration

Syntax: Procedure IDMACHINE (VAR version : Char; VAR card80,
extend80 : Boolean);

Description: Returns information regarding the hardware
configuration as follows:

version: " - Apple][
'+' - Apple][+
'E' - Apple //e
‘e’ - Apple //e with 65¢02 chips
'c' - Apple //c

card80 Returns TRUE if an 80 column card is found

extended80 Returns TRUE if the system has more than
64K of memory.

SYSTEM UTILITIES TOOLKIT 1- 37

SCREEN MANAGEMENT L IBRARY

Command Name: Inverse Screen Mode
Syntax: Procedure INVERSE;

Description: Set the screen to inverse mode. Note that lower case
characters do not appear correctly in the 40 column mode.

RARRAANAA AR RAR AR AR AR ARN AR RA N

Command Name: Normal Screen Mode
Syntax: Procedure NORMAL;

Description: Return the screen mode to normal.

LE R T2 T2 it ssssssssssd

Command Name: Enable 40 Column Display

Syntax: Procedure ON40;

Description: Enable the 40 column display (this procedure
disables the firmware in the 80 column card).

hkRAAAAhhhhhhhkhhhhhhhddhkhhhhhhhhd

Command Name: Enable 80 Column Display
Syntax: Procedure ONB8OQ;

Description: Enable the 80 column display. If the system does not
contain an 80 column card, this command is ignored.

|- 38 SYSTEM UTILITIES TOOLKIT

SCREEN MANAGEMENT LIBRARY

Command Name: Scroll Down
Syntax: Procedure SCROLLDOWN;

Description: Scroll the 80 column display down one line. The
cursor position remains unchanged.

RARRRREAAN AR NARAEAN AR R AANA RN A RS

Command Name: Scroll Up
Syntax: Procedure SCROLLUP;

Description: Scroll the 80 column display up one line. The cursor
position remains unchanged.

hhhhhhhrhhA Akt A kb A A A AR A RL

Command Name: Screen Bottom
Syntax: Procedure SCRNBOTTOM (x : INTEGER);

Description: Set the bottom margin of the video screen to a value
between 0 and 23. This command effects the scope of the CLS
command. The SCRNTOP and SCRNBOTTOM procedures are used
to limit video output. Setting SCRNTOP and SCRNBOTTOM to the
same value will limit the screen to single vertical line of text. The
position of this line is determined by the value passed to the
procedures.

SYSTEM UTILITIES TOOLKIT |- 39

SCREEN MANAGEMENT | IBRARY

Command Name: Screen Full
Syntax: Procedure SCRNFULL;

Description: This procedure cancels the SCRNTOP and
SCRNBOTTOM commands and returns the screen to full size.

AARRARRARRARRARANRAE AR AR AN R AR Ak ke

Command Name: Screen Top
Syntax: Procedure SCRNTOP (x : Integer);

Description: Set the top margin of the video screen to a value
between 0 and 23. This command effects the scope of the CLS
command. The SCRNTOP and SCRNBOTTOM procedures are used
to limit video output. Setting SCRNTOP and SCRNBOTTOM to the
same value will limit the screen to single vertical line of text. The
position of this line is determined by the value passed to the
procedures.

AR KAANNRRNAARRR AR AR AR AR N R N A Adh

Command Name: Tab
Syntax: Procedure TAB (x : Integer);

Description: Move the cursor to position X in the current horizontal
line. Out of range values are ignored.

I- 40 SYSTEM UTILITIES TOOLKIT

E. Other System Utilities

Overview

The Other System Utilities Directory contains the following routines.

o Random Number Routines

REAL (Generates a random number between 0 and 1)
RANDOM (Generates a random integer in range, min..max)
SEED ("Seeds" the random number generator)

o Conversion Routines
REAL NUMBER TO STRING
INTEGER TO STRING
STRING TO REAL NUMBER
STRING TO INTEGER

o Line Parse Routine

o Sort/Merge Routine

Using Other System Utilities

To use the Other System Utilities, you must first "include" the global
type declarations (if any) and the desired routines after the variable
and type declarations in your Pascal program. (Please refer to
Chapter lll of the Kyan Pascal User Manual for more information about
the use of Include files in Pascal programs.) Once the routine is
included, you can call the routine as often as needed in your program.

Note: Don't forget to place a copy of all the files "included” in your
Pascal program in the same working directory as the main program. If
you forget, the compiler will not be able to find the file and a "File Not
Found" error will occur.

SYSTEM UTILITIES TOOLKIT |- 41

OTHER SYSTEM UTILITIES

Random Number Routines

There are three routines in this group. They can be used in your
Pascal programs to generate random numbers.

There are no global types associated with these routines.

RAARAARRARANARRRRARRARAARNARRAAARAR R R AR A AR R AN AR A AR AR R A AR

Command Name: Random Number 1
Syntax: FUNCTION RND: REAL;

Description: Generates a real random number between 0 and 1.

ARAEARE AR RRARAR AR AR ARARANARNR R AR AR A NRNRNRAR AR R RN A AN ddkd

Command Name: Random Number 2

Syntax: FUNCTION RANDOM (min, max : INTEGER) : INTEGER;
Description: Returns a random integer between min and max.
Note: Random Number 2 utilizes Random Numbner 1 (FUNCTION
RND) in its source code. As a result, you must be certain to include a

copy of the Random Number 1 routine in any programs which use
Random Number 2.

- 42 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Command Name: Seed Random Number

Syntax: PROCEDURE SEED (seed1 seed?2, seed3 seed4:
INTEGER);

Description: This routine is used in conjunction with either of the
random number generators to "seed" the string of random numbers
generated. Using this routine, it is possible to fix the starting value of
the random number sequence.

To "seed" the Random Number Generator, you first include the Seed
and Random Number procedures in your Pascal program. Then, you
specify four integers of your choosing (i.e., seedt, seed2, seed3,
seed4). When the program runs, the Random Number Generator
takes these four values, inputs them into its polynomial equation, and
generates a sequence of random numbers. Everytime the program is
run, the Random Number Generator produces the same sequence of
random numbers. To change the sequence, you simply change one
or more of the seed values.

SYSTEM UTILITIES TOOLKIT |- 43

OTHER SYSTEM UTILITIES

Conversion Routines

This group contains four conversion routines and one global type file.

The global types can be declared by adding the following lines of
code to the declarations portion of your Pascal program or by
including the file CONV.TYPES.I found on the System Utilities
disk.

STRING6 =ARRAY[1.. 6] OF CHAR;
STRING20 = ARRAY[1..20] OF CHAR,;

ARANARRNRRRARARARANR R AN R ARR AN A A AR AN A AR R AR A AR A AR A AN DA AR AR AR

Command Name: Real to String Conversion

Syntax: PROCEDURE REALTOSTR (VAR number:REAL; leading,
decpt: INTEGER; VAR result: String20);

Description: This routine returns a STRING20 type in the format
indicated by "leading” and "decpt". "Leading" is the number of
characters to use for the leading digits in the resulting string. “Decpt”
is the number of decimal places allowed for expansion. For example:

REALNUM:= 35932.382;
REALTOSTR (REALNUM, 10, 5, ANSWER);
WRITELN (ANSWER);

will output: 35932.38200 (note the five leading spaces)
Notes:

1. Extra space must be left for negative signs in the "leading"
specification. Also, if you specity "leading" to be zero, scientific
notation will be used for output.

2. If the real number is too large to fit into the string, the string
returned will be filled with # symbols. Also, if the leading characters fit
but the number of decimal places do not, then as many numbers to
the right of the decimal point that will it will be used.

|- 44 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Command Name: Integer to String Conversion

Syntax: PROCEDURE INTTOSTR (number: INTEGER; justify:
CHAR; VAR result: String6);

Description: This routine converts the integer passed into string.
A leading minus is used when the value is negative. Justification
characters are:

R Right justify number, buffering to left with spaces
z Right justify number, buffering to left with zeros
L Left justify with spaces to right (default).

Notes:
1. Any unrecognizable justify characters are treated as Left.

2. The justify character passed must be a capital letter.

RARBRRNANAAARA AR R AR AR AR AR AR A AN R AR A AR RARRAANAR R AARARAANANRAN

Command Name: String to Real Conversion

Syntax: FUNCTION STRTOREAL (VAR number: String20) : REAL;
Description: This routine converts a string passed to a real number.
Notes:

1. Non-numeric characters are ignored.

2. The first decimal point encountered is used for conversion.

3. Negative numbers are valid if the first character in the string is a

SYSTEM UTILITIES TOOLKIT |- 45

OTHER SYSTEM UTILITIES

Command Name: String to Integer Conversion
Syntax: FUNCTION STRTOINT (VAR number: String6) : INTEGER;
Description: This routine converts a string passed to an integer.
Notes:

1. All non-numeric characters are treated as zeroes.

2. Aleading minus will give the INTEGER a negative value.

|- 46 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Line Parsing Routine

The Line Parsing routine gives you a method by which to read and
"parse” parameter inputs to a program. The source of this input can be
the keyboard or another Pascal program. The line parser reads the
input string in the Apple input buffer (location $200 to $2FF); it then
looks for spaces and breaks the string into records (words); next, it puts
these records into a linked list; and, finally, it returns a pointer which
identifies the location of the first record in the linked list.

To use the line parsing routine, you must first declare certain global
types in your Pascal program. You can declare these global types by
adding the following code to the global declarations portion of your

Pascal program or by including the Parse.Types.! file found in the
Other Utilities directory.

String127 = ARRAY [1..127] of CHAR,;
StrPointer = *StrRecord:;
StrRecord = RECORD
StrFound : String127;
NextStr : StrPointer
END:

ERERRRAIARR R AR AN R AR RR A AR A RN A AR A RN R AR AAAAR AR RA AR AR AR AR

Command Name: Line Parse Routine
Syntax: FUNCTION PARSELINE : StrPointer:

Description: This routine returns a pointer to a linked list containing
the records or words found in the line passed. The records are
considered terminated when they are followed by at least one space
(blank). If a blank line is passed to PARSELINE, the pointer 'ParseLine’
will point to NIL.

SYSTEM UTILITIES TOOLKIT |- 47

OTHER SYSTEM UTILITIES

Merge and Sort Routines

The merge and sort routines are very handy for organizing your files.
The MERGE procedure will combine up to five presorted files into a
single file that is in alphabetically and/or numerically ascending or
descending order. The SORT procedure will arrange a file of any type
of record into alphabetical or numerical order.

Global Declarations

To use one, or both, of the routines in a Pascal program, you must first
Include the file "SRTMERG.TYPES.I", which declares the data types for
both of the procedures. This include file declares the following:

PATHSTRING = ARRAY [1..65] OF CHAR;

NAMEARRAY = ARRAY [1..7] OF PATHSTRING;

FIELD_TYPE = (ALPHA_FIELD, INTEGER_FIELD,
REAL_FIELD);

MERGE also requires the declaration of a VARiable of type
NAMEARRAY in which pathnames will be stored. You can declare your
own or include the file "SRTMERG.VARS.I" into the global VAR section
of your program. For convenience sake, we will assume you have
included the SRTMERG.VARS.| file and are using MERGENAMES as
your global VARiable of type NAMEARRAY.

Using the MERGE Routine

The MERGE procedure takes between two and five ordered data files,
sorts records as they are encountered, and produces one large
resultant file containing those merged records. You must specify which
files are to be used as source, and the name of the 'intermediate’ (or
temporary) file for the completely merged image. You even have the
option to specify a second destination file.

The MERGE procedure is stored in file "MERGE.L." The procedure is
declared as follows:

PROCEDURE MERGE (VAR MERGENAMES: NAMEARRAY;
SELECT, FNUM, RLEN, KLEN, OSET, ORDER: INTEGER;
KTYPE: FIELD_TYPE);

|- 48 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

The Parameters are:

MERGENAMES: The MERGE procedure permits you to
sort/merge up to five data files. The names of these files must be
stored sequentially in MERGENAMES][1..5], starting at element 1.
MERGENAMES[6] must contain the pathname of a temporary file to
which the MERGE procedure will write out the merged file. The
pathname in MERGENAMES[6] must be a valid pathname (if it is not,
MERGE will fail immediately). MERGENAMES[7] may contain a different
name for the resulting data file if you wish, or be left blank, depending
on the value of SELECT below.

SELECT: SELECT is an index to array MERGENAMES; it must
be in the range of 1 to 7 inclusive. SELECT indicates what filename to
use as a destination file for the resulting merge output file. if SELECT
has a value between 1 and 5, the corresponding data file pathname will
be used to write the merged file to, thus replacing the data file
contents. If SELECT is 6, the temporary filename indicated by
MERGENAMES will be left the only output as a result of the MERGE
call. If SELECT is 7, the pathname stored in MERGENAMES[7] will be
used as a final output destination by MERGE.

ENUM: FNUM is the number of data files to be merged
together by the MERGE procedure. Think of this number as an index
to the last pathname in the MERGENAMES array you want merged.
FNUM must have a value between 2 and 5 inclusive.

BLEN: RLEN is the record length in bytes. In general, record
length is fairly easy to calculate. For more information on calculating
record lengths and storage sizes by types please consult the Assembly
Language programming section of your Kyan Pascal User Manual.

KLEN: KLEN is the length of the key record field in bytes. If
you are sorting with a key field of either REALs or INTEGERS, KLEN is
automatically set according to type (8 for REAL or 2 for INTEGER).
However, using a key made up of CHARacters (alpha_field) will cause
the comparison of the keys to take place against KLEN number of
characters. KLEN cannot be longer than 255 bytes.

SYSTEM UTILITIES TOOLKIT |- 49

OTHER SYSTEM UTILITIES

OSET: OSET is the byte offset of the first byte of the key field
in the record. OSET can be thought of as the number of bytes found in
the record before the first byte of the key field. Therefore, if the key
field in your record was the first field declared, OSET would be passed
as a 0, since there are no bytes before the key field in that record
layout.

ORDER: ORDER determines in what fashion the resulting
sorted file's records will be stored. If ORDER is negative, the records
will be sorted in descending (highest first) order. If ORDER is non-
negative (zero or positive), the records will be sorted in ascending order
(lowest first).

KTYPE: KTYPE indicates the type of key field you have
specified. If you are using a key that is a character or an array of
characters, specify ALPHA_FIELD as KTYPE. If you are using
INTEGERES, specify INTEGER_FIELD; if sorting against real numbers
use REAL_FIELD as KTYPE.

Using the ESORT routine
The ESORT routine requires the following:
1. The SRTMERG.TYPES.I file be included as global types
2. The SRTMERG.VARS.I file be included as global varables
3. The MERGE.I file be included in the Pascal host program
previous to the ESORT procedure.

The global VARiables declared in SRTMERG.VAR.I are:

FYLE : PATHSTRING;
MERGENAMES : NAMEARRAY;
KTYPE : FIELD_TYPE;
RLEN, OSET,

ORDER, KLEN,

FNUM, SELECT INTEGER,;

I- 50 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Each variable listed must be conditioned before calling the ESORT
routine.

ESORT should be used when one data file containing records with key
fields must be sorted. This is accomplished by following these steps:

1. Assign the name of the file to be sorted to the global
variable FYLE. Note that the name of the file to

be sorted cannot be longer than 62 characters (ESORT
needs the remaining bytes in order to append file suffixes to
the pathname specified)

2. The global variables RLEN, KLEN, OSET, ORDER, and
KTYPE must be assigned values corresponding to those
explained in the MERGE documentation.

3. Call ESORT (remember - ESORT has NO PARAMETERSY!)
The parameters in MERGE and the global variables used by
ESORT have the same name. However, you should always
remember to assign the global variables their correct values
before calling ESORT.

SYSTEM UTILITIES TOOLKIT 1- 51

OTHER SYSTEM UTILITIES

I- 62 SYSTEM UTILITIES TOOLKIT

F. APPENDIX
UTILITIES DISK DIRECTORY

Volume Name: UTILITY.TOOLKIT

Directory: ProDOS.LIB
Include Files: PRODOS.TYPES.I (Global Types)

DELETE.I
RENAME.|
COPY.l
SETPREFIX.|
GETPREFIX.I
APPEND.I
LOCK.I
UNLOCK.I
MAKEDIR.|
REMDIR.|
GETDIR.I
FIND.I
SCANFILE.|
FILETYPE.I
BSAVE.|
BLOAD.|
FORMAT.I
GETCLOCK.I
GETTIME.|
GETDATE.l
SETCLOCK.I
SETTIME.|
SETDATE.|
FINDCLOCK.I
PRTMLIERROR.I
PRINTFILE.|

SYSTEM UTILITIES TOOLKIT |- 53

APPENDIX

Directory: DEVICE.LIB

Incl Fil

FINDMOUSE.I
INITMOUSE.|
MOUSECLICK.I
MOUSEHELD.I
MOUSEMOVED.I
MOUSEX.
MOUSEY.I
ZEROMOUSE.I
SETMOUSEXY.|
SETXBOUNDS.|
SETYBOUNDS.I
HOMEMOUSE.!
ENDMOUSE.I
PRTMOUSECHAR.I
BUTTONO.I
BUTTON{.I
JOYSTX.I
JOYSTY |

DIRECTORY: SCREEN.LIB

Include Files:

CLS.I
GOTOXY I
TAB.I
INVERSE.|
NORMAL.|
SCROLLUP.|
SCROLLDOWN.|
CLRLINE.|
CLREOLN.I
CLREOP.I
COL80.|
CURSORX.|
CURSORY.|
GETCHARI
SCRNTOP.|
SCRNBOTTOM.|
SCRNFULL.I
IDMACHINE.|
ONA40.|

ONB8O.|

{- 54 SYSTEM UTILITIES TOOLKIT

APPENDIX

Directory:

Directory:

Fil

OTHER.LIB

CONV.TYPES.| (Global Types)
REALTOSTR.I

STRTOREAL.I

INTTOSTR.I

STRTOINT.I

SEED.I
RND.|
RANDOM.|

SRTMERG.TYPES.| (Global Types)
SRTMERG.VARS.| (Global Variables)
ESORT.I

MERGE.|

PARSE.TYPES.I
PARSELINE.I

DEMO.LIB

CATALOG.P (Source Code)
CATALOG (Object Code)

MOUSE.DEMO.P (Source)
MOUSE.DEMO (Object)

RANDOM.DEMO.P (Source)
RANDOM.DEMO (Object)

ESORT.DEMO.P (Source)
ESORT.DEMO (Object)

MERGE.DEMO.P (Source)
MERGE.DEMO (Object)

MOUSETEXT.DEMO (Object)
TURTLE.DEMO (Object)

SYSTEM UTILITIES TOOLKIT |- 55

Suggestion Box

We do our best to provide you with complete, bug-free software and

documentation. With products as complex as compilers and program-
ming utilities, this is difficult to do. If you find any bugs or areas where
the documentation is unclear, please let us know. We will do our best
to correct the problem in the next revision. We would also like to hear
from you if have any comments or suggestions regarding our product.

To help us better understand your comments please use the following
form in your correspondence and mail it to: Kyan Software Inc.,
1850 Union Street #183, San Francisco, CA 94123.

Name

Address

City State ZIP

Telephone:

(day) (evening)

Kind of Problem Software Description
___Software Bug - Product Name
___Documentation Error Version No.

_ Suggestions Date Purchased
__ Other

Kyan Software Products You Use
__Kyan Pascal __ Kyan Macro Assembler/Linker
__ System. Utilities Toolkit __ Advanced Graphics Toolkit
__MouseText Toolkit __MouseGraphics Toolkit
__ TuntleGraphics Toolkit __ Other

Your Hardware Configuration
Type/Model of Computer
How many and what kind of disk drives

What is your screen capability: 40 Column __ 80 Column
How much RAM? K (what kind of RAM Board?)
What kind of printer and interface card do you use?

What kind of modem?
Other information about your computer system:

What do you use this software for?
____Education (lama __ teacher __student)
___Hobby
____Professional Software Development

___ Other

Problem Description (if appropriate, please include a disk or
program listing).

Suggestions

TI 8605A

