ToolKit Il

NlouseText

USERS MANUAL

KYAN SOFTWARE INC.
SAN FRANCISCO, CALIFORNIA

Toolkit Il

NMlouseText

Adds a Macintosh-like interface
to Apple // programs.

Use this software with

an Apple //c or enhanced //e
and

Kyan Pascal (Version 2.0)

Kyan Software Inc.
San Francisco, California

TABLE OF CONTENTS

CONTENTS PAGE
PREFACE
Notice 7
Copyright 8
Copy Protection 8
Copyright and Licensing Requirements 9
Warranty Statements 10
Technical Support 11
Suggestion Box 11

A. INTRODUCTION

Overview
Hardware Requirements 13
The Manual 14
MouseText Routines 14
Background
The Desktop 15
Windows 15
Menus 20
The Cursor 22
Events 22
Mouse Emulation 23
Demonstration Programs 24

B. USING THE TOOLKIT

Overview 25
Disk Organization 26
Pascal interface 26
Strings 26
Memory Organization 27
Large Application Programs 27
Data Structures and Constant Definitions 28
MouseText Runtime Module 28
Assembly Language Interface 29

MOUSETEXT TOOLKIT 1i-3

TABLE OF CONTENTS

CONTENTS

C.

D.

USING THE TOOLKIT (cont.)

Programming with the Toolkit
Pseudo Code Listing
MouseEmulation/Safety Net Mode

STARTUP AND CURSOR COMMANDS

Startup Overview/Command List
StartupProgramming Notes
Cursor Overview/Command List

EVENT-HANDLING COMMANDS

Overview

Types of Events

Precedence of Events

Event Queue and Processing
Event-Handling Command List
Programming Notes

MENU COMMANDS

Overview

Menu Command List

Programming Notes
Menu Keys
Other Notes

WINDOW COMMANDS

Overview

Window Command List

Programming Notes
Components of the Window
Window ID Numbers
Window Coordinate Systems
Window/Document Information
Refreshing Windows

Il -4 MOUSETEXT TOOLKIT

TABLE OF CONTENTS

CONTENTS PAGE

G. CONTROL REGION COMMANDS

Overview 63
Control Command List 63
Scroll Bars 63

H. COMMAND REFERENCE SECTION

Overview 67
Command Summary 67
Individual Command Specifications 69

l. PASCAL DATA STRUCTURES

Constants 157
Event 157
Menu Item Names 158
Menu ltem Blocks 158
Menu Data Structures 159
Menu Title Blocks 159
Menu Bars 160
Window Information Data Structures 160
Document Information Data Structures 162
Screen Region Types 163
Control Region Types 163
Control Region Part Types 164

K. APPENDICES

Il. AppleMouse Interface

Passive Versus Active Operation 165
Mouse Interrupts 166
The TimeData Firmware Call 166

MOUSETEXT TOOLKIT {I-5

TABLE OF CONTENTS

CONTENTS PAGE

K. APPENDICES (cont.)

Il. Mouse Firmware Interface

Finding the Mouse Card 167
Reading Mouse Data 168
Operating Modes 169
Passive Mode 170

interrupt Mode 171

Unclaimed Interrupts 171

Making Calls To Mouse Fimware 172
Firmware Routines 173
SetMouse 173

ServeMouse 174

ReadMouse 174

ClearMouse 174

PosMouse 174

ClampMouse 175

HomeMouse 175

InitMouse 175

lll. Toolkit Error Codes 177
IV. Disk Organization 179
V. Other Pointing Devices 183

Il- 6 MOUSETEXT TOOLKIT

PREFACE

Notice

Kyan Software reserves the right to make improvements to the
products described in this manual at any time and without notice.
Kyan Software cannot guarantee that you will receive notice of such
revisions, even if you are a registered owner. You should periodically
check with Kyan Software or your authorized Kyan Software dealer.

Although we have thoroughly tested the software and reviewed the
documentation, Kyan Software makes no warranty, either express or
implied, with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any particular
purpose. Some states do not allow the exclusion or limitation of
implied warranties or liabilities or consequential damages, so the
above limitation or exclusion may not apply to you.

Copyright 1986 by Kyan Software, Inc.
1850 Union Street #183
San Francisco, CA 94123
(415) 626-2080

Kyan Pascal and KIX are trademarks of Kyan Software. The word Apple and
ProDOS are registered trademarks of Apple Computer.

MOUSETEXT TOOLKIT 1I-7

PREFACE

Copyright

This users manual and the computer software (programs) described in
it are copyrighted by Kyan Software Inc. and Apple Computer Inc.,
with all rights reserved. Under the copyright laws, neither this manual
nor the programs may be copied, in whole or part, without the written
consent of Kyan Software Inc. and/or Apple Computer Inc. The only
legal copies are those required in the normal use of the software or as
backup copies. This exception does not allow copies to be made for
others, whether or not sold. Under the law, copying includes
translations into another language or format.

ProDOS and the MouseText Library are copyrighted programs of
Apple Computer Inc. They are licensed to Kyan Software for
distribution and use only with Kyan Software products. Apple
software shall not be copied onto another diskette (except for archive
purposes) or into memory unless as part of the execution of Kyan
Software products. When the Kyan Software product has completed
execution, Apple software shall not be used by any other program.

Copy Protection

Kyan Software products are not copy-protected. As a result, you can
make backup copies and load the software onto a hard disk or into a
RAM memory expansion card. We trust you. Please do not violate
our trust by making or distributing illegal copies.

II-8 MOUSETEXT TOOLKIT

PREFACE

Copyright and Licensing Requirements

Portions of the MouseText Toolkit were developed by Apple
Computer Inc. and licensed by Kyan Software Inc. for use in this
product. These Apple developed modules include the MouseText
Runtime Module and certain technical reference portions of this
manual. The balance of the manual and all of the routines necessary
to interface the MouseText Runtime Module with Kyan Pascal and
assembly language programs were developed by Kyan Software.

Kyan Software encourages you to use the MouseText routines found
in this Toolkit in your application programs. You will find that most of
the new software being developed for the Apple 1l family incorporates
the Macintosh-like interface which these routines support.

If you write software for commercial distribution and use
the tools provided by Kyan, it is essential that you
observe the copyright and licensing regulations
established by Kyan and Apple Computer.

Kyan Software does not require a special license or charge a royalty
for commercial use of our Pascal Runtime Library or the MouseText
interface modules contained in this Toolkit. We do, however, require
you to acknowledge our copyright and comply with the terms outlined
in the license agreement found in your Kyan Pascal Users Manual. If
you would like more information about commercial use of Kyan
software modules, please contact Kyan Software at 415-626-2080.

If you want to incorporate the MouseText Runtime Module, ProDOS
or some other Apple Computer software module in your commercial
software, you must obtain a license from Apple Computer Inc. These
licenses are not expensive and are relatively easy to obtain. For more
information on Apple's licensing requirements and procedures,
please contact:

Apple Computer Corporate Licensing
20525 Mariani Avenue, M/S 23-F
Cupertino, CA 95014

408-996-1010

MOUSETEXT TOOLKIT 11-9

PREFACE

Limited Warranty

Kyan Software warrants the diskette(s) on which the Kyan software is
furnished to be free from defects in materials and workmanship under
normal use for a period of ninety (90) days from the date of delivery to
you as evidenced by your proof of purchase.

Disclaimer of Warranty -- Kyan Software Inc.

Except for the limited warranty described in the preceding paragraph,
Kyan Software makes no warranties, either express or implied, with
respect to the software, its quality, performance, merchantability or
fitness for any particular purpose. Some states do not allow the
exclusion or limitation of implied warranties or liabilities for incidental or
consequential damages, so the above limitations or exclusions may
not apply to you. This warranty provides you with specific legal rights.
There may be other rights that you may have which vary from state to
state.

Disclaimer of Warranty -- Apple Computer Inc.

Apple Computer Inc. makes no warranties, either express or implied,
regarding the enclosed computer software package, its
merchantability or its fitness for any particular purpose. The exclusion
of implied warranties is not permitted by some states. The above
exclusion may not apply to you. This warranty provides you with
specific legal rights. There may be other rights that you may have
which vary from state to state.

il-10 MOUSETEXT TOOLKIT

PREFACE

Technical Support

Kyan Software has a technical support staff ready to assist you with
any problems you might encounter. If you have a problem, we
request that you first consult this users manual. We have worked very
hard to identify and include in this manual, the answers to questions
and problems most frequently encountered.

If you have a problem which is not covered in the manual, our support
staff is ready to help. If the problem is a program which won't compile
or run, we can best help if you send us a description of the problem
and a listing of your program (better yet, send us a disk with the listing
onit). We will do our best to get back to you with an answer as quickly
as possible.

If you question can be answered on the phone, then give us a call.
Our technical staff is available to assist you on Monday through Friday
between the hours of 9 AM and 5 PM, West Coast Time. You may
reach them by calling:

Technical Support: (415) 626-2080

Suggestion Box

Kyan Software likes to hear from you. Please write if you have
suggestions, comments and, yes, even criticisms of our products.
And, we do listen. It is your suggestions and comments that
frequently lead to new products and/or product modifications.

We encourage you to write. To make it easier, we have included a
form in the back of this manual. This form makes it easier for you to
write and easier for us to understand and respond to your comments.
Please let us hear from you.

Mailing Address: Kyan Software Inc.
1850 Union Street #183
San Francisco, CA 94123

MOUSETEXT TOOLKIT 1 - 11

PREFACE

This page is supposed to be blank.

I1-12 MOUSETEXT TOOLKIT

A. Introduction

Overview

The MouseText Toolkit is a family of routines which provide an easy
means of adding Macintosh-like features to Pascal and assembly
language programs. With the MouseText Toolkit, you can write
programs for the Apple Il which include windows with text display,
menu-bars, pull-down menus, and mouse-controlled events.

The MouseText Toolkit consists of a Runtime Module (i.e., a binary file
which executes the graphics and mouse commands); a set of
programming utility routines (i.e., routines which allow you to
incorporate the MouseText procedures in Pascal programs); and, more
than 50 MouseText procedures which can be "included” in and called
from a Pascal or assembly language program. The Toolkit also contains
sample programs which demonstrate the use of the Toolkit routines.

To use MouseText routines, you first declare the MouseText constant
and type definitions and the desired MouseText procedures in your
application program. Then, you call the MouseText procedures in your
program to create the desired menus, text windows, and mouse
controls. When you are finished, copy your program onto the disk
along with a copy of the Pascal Runtime Library and the MouseText
Runtime Module. When run, your program will display pull-down
menus, text windows, and respond to mouse or cursor controls.

Hardware Requirements

The MouseText Toolkit requires an Apple lic or Apple lle with enhanced
character ROM (Read Only Memory). It is not compatible with an Apple I
or ll+ computer.

A mouse is recommended but is not required. If you do not have a
mouse, please refer to the end of this section which describes how to
use your Apple Il keyboard in "Apple Il Mouse Emulation Mode".

MOUSETEXT TOOLKIT 11-13

SECTION A -- INTRODUCTION

The Manual

This manual explains how to use the MouseText Toolkit routines in your
application programs and provides technical reference information for
each MouseText command.

it is recommended that you read the first two chapters of the manual to
familiar yourself with the basic features and use of the MouseText
Toolkit. The balance of the manual can serve as a reference guide to
be consulted when you have questions regarding specific Toolkit
commands or procedures.

MouseText Routines

MouseText is the term used to describe the special cursor display
characters which can be produced by the character generator in the
Apple //c and enhanced Apple /e computer. The MouseText Toolkit
is a set of routines which use these characters and other software
techniques to give a Macintosh-like "look and feel" to Apple //
programs.

MouseText routines can be used in both Pascal and assembly
language programs. These routines enable you to write software which

supports:

o cursor selection and display (with or without a Mouse)

o four major kinds of events or actions:
Mouse events,
Keyboard events,
Update events, and
Application events.

o pull-down menu control and display:
Menu bar selection and display,
Menu selection and display, and
Menu item selection and display.

o window contro! and display:
Window selection and display,
Window dragging and size-changing, and
Writing within text windows.

Il- 14 MOUSETEXT TOOLKIT

SECTION A - INTRODUCTION

o scrolling windows through documents

The overall operation of MouseText commands and the functionality
achieved with the MouseText Toolkit are described in the following
sections. The individual MouseText commands are listed in
subsequent sections of this manual.

Background
The following sections describe the "Macintosh” environment.

The Desktop

The screen may be thought of as the top of a desk, with different
documents on it. The user can put a new document on the desk, scan
it line by line, page through it, move it around, remove it from the
desktop or merely set it aside for a moment while he looks at another
document.

Windows

A window represents a document on the desktop. A window has a
rectangular content area, where its primary information is displayed.
Minimum and maximum sizes of this area are specified by the
programmer. A window also has several optional components:

The drag bar is used to move the window around on the desktop. The
drag bar sits atop the content area and contains the title of the window.

The close box (or go-away box) is used to remove the window from the
desktop. The close box is a small box located just inside the left edge

of the drag bar.

The grow box is used to change the size of the window and therefore
the amount of information from the document which can be viewed at
one time. The grow box is a small box located in the lower right corner
of the content area.

MOUSETEXT TOOLKIT 1l -15

SECTION A -- INTRODUCTION

Scrollbars are used to scan or page through a document horizontally
and/or vertically; they define a rectangular field of vision within the
document.

- kt Displ with Window

Menu Bar

Desktop

Window
Title Bars

Window 1

Window 2

Content
Regions

&

_ Desktop j

II-16 MOUSETEXT TOOLKIT

SECTION A - INTRODUCTION

Fiqure A-2. The Make-Up of a Window.

: Menu Bar I

Go Away Box Drag Bar
E=—————— =
Up Arrow
‘lPage Upli
Region
Thumb
Vertical Scroll Bar — “Page
Down”
Region
Horizontal Scroll Bar :
Down
i \V4 Arrow
“Page Left” “‘Page Right"’ Grow Box
Region Region
Left Thumb Right
Arrow Arrow

The MouseText Toolkit is used in applications to do the following when
the user clicks the mouse in the control area of the window.

Dragqing a Window

The user clicks anywhere in the drag bar (other than in the close box),
and drags the mouse. As he does so, an outline of the window follows
the mouse to show the tentative new window location. When the user
releases the mouse button, the window is released from its starting
location and a new, empty window is drawn at the new location. A
window can be dragged almost entirely off the desktop, but enough of
its drag bar must remain so that the window can be moved back to a
usable location.

MOUSETEXT TOOLKIT 1l -17

SECTION A -- INTRODUCTION

Closing a Window

The user clicks in the close box. If he also released the mouse button
in the close box (even after dragging it outside), the window is released
from the screen; otherwise closing is cancelled.

Sizing a Window

The user clicks in the grow box and drags the mouse. As he does so,
an outline of the window shrinks or expands to indicate the tentative
new window size (the upper left corner of the window remains fixed). If
the mouse is dragged beyond the minimum or maximum content size,
the cursor continues to move, but the outline does not change size.
When the user released the mouse button, a new, empty window is
drawn in the appropriate size, and the content area should be redrawn.

If the user clicks in the thumb and drags the mouse, the thumb will
move venrtically (within the confines of the scrolibar) along with the
mouse until the button is released (even if the mouse is dragged
outside the scrollbar). The portion of the document corresponding to
the new thumb position should then be drawn.

If the user clicks in the page-up area, the previous ‘page’ of the
document (the area whose last few lines are the same as the first lines
of the current page) should be drawn, and the thumb position should
be updated. This paging operation should be repeated until the
mouse button is released or the first page is reached.

Similarly, if the user clicks in the page-down area, the next page of the
document should be drawn, the thumb should be updated, and the
operation should be repeated until the button is released or the last
page is reached.

If the user clicks in the up-arrow, the document should be scrolled
downward by a line (or appropriately small number of lines), and the
thumb position should be updated. This scrolling operation should be
repeated until the mouse button is released or the first line is reached.

Similarly, if the down-arrow is clicked, the document should be scrolled
upward by the appropriate number of lines, the thumb should be

I-18 MOUSETEXT TOOLKIT

SECTION A -- INTRODUCTION

updated, and the operation should be repeated until the button is
released or the last line is reached.

rizontal Scrollin

If the user clicks in the thumb and drags the mouse, the thumb will
move horizontally (within the confines of the scrollbar) along with the
mouse until the button is released (even is the mouse is dragged
outside the scrollbar). The portion of the document corresponding to
the new thumb position should then be drawn.

If the user clicks in the page-left area, the previous 'page’ of the
document (the area whose last few columns are the same as the first
columns of the current page) should be drawn, and the thumb position
should be updated. This paging operation should be repeated until
the mouse button is released or the first page is reached.

Similarly, if the user clicks in the page-right area, the next page of the
document should be drawn, the thumb should be updated, and the

operation should be repeated until the button is released or the last

page is reached.

If the user clicks in the left-arrow, the document should be scrolled to
the right by a column (or appropriately small number of columns), and
the thumb position should be updated. This scrolling operation should
be repeated until the mouse button is released or the first column is
reached.

There may be more than one window on the desktop, but there can be
only one active window; this window is called the front or top window. A
highlighted title, close box, grow box, and fully functional scrollbars
appear only for the front window. There is a specific front-to-back
ordering of the windows on the desktop, with each window residing in
its own plane. This ordering facilitates redrawing windows when the
desktop changes.

Each window's location on the desktop plus its size and coordinate
system are independent of other windows on the desktop.

MOUSETEXT TOOLKIT 1I-19

SECTION A -- INTRODUCTION

Menus

The user makes things happen on the desktop by interacting with pull-
down menus and the mouse, and by shortcut keystrokes which
execute procedures corresponding to some menu selections. Figure
A-3illustrates the basic components of the menu. The topmost area of
the screen is reserved for the menu bar, a line of inverse text listing the
menu titles. If the mouse is clicked on a menu title, the title is
highlighted and a vertical list of the corresponding menu items appears
under it. If the button is released outside the list of items, the list
disappears. If the mouse is moved to another title, the list disappears
and the list corresponding to the new menu title is displayed. Onthe
other hand, if the mouse is dragged down the list of items, each item will
be highlighted while the mouse is over it, indicating that it will be
selected if the button is released. If the mouse button is released while
a menu item is highlighted, the menu closes and its title stays
highlighted until the task associated with the item is complete.

Menu items can be checked off to indicate that certain program features
are activated. The checkmark character can be customized for each
item.

Menu items, or even entire menus, can be disabled when it is

inappropriate to choose them. A disabled item has a different

appearance from an enabled item, and does not get highlighted when

gle mouse is dragged over it. A disabled menu appears with all items
isabled.

Groups of menu items can be visually separated by including a special
filler item between them. A filler item appears as any character in the
filler region or as a solid line.

Il- 20 MOUSETEXT TOOLKIT

SECTION A — INTRODUCTION

iqure A- mponent

Menu 1.D.
1 2 3) Numbers

¢
View I*Menu Bar

File/Print

: :
2 Undo Menu Title
3 Cut
4 Copy < Menu Item
5 |
G Paste ;
7 Clear :
5 Show Clipboard :
|
|
|
[
|
J Menu ltem
| Numbers
]

MOUSETEXT TOOLKIT Il -21

SECTION A -- INTRODUCTION

The Cursor

The cursor is the image that moves on the display as the user moves
the mouse. The programmer specifies the cursor to be an arrowhead,
hourglass, checkmark, text cursor, or cell cursor. The Toolkit handles
the tracking of the mouse.

Events

A desktop program is driven by events; i.e., something happens and
the program responds to it. There are four kinds of events: mouse
events, keyboard events, update events, and application events.

Mouse events are button down, button up, drag (mouse
moved while button held down), and apple-key button down
(mouse button pressed while an apple key was also pressed).

Keyboard events are keypresses; handling of keyboard events
by the Toolkit is optional.

Update events are signals that the contents of a window need
to be updated. They are generated when the user re-sizes a
window, drags a window, or closes a window. They are not
generated when a window is opened or selected.

Application events are specified by the programmer for
whatever purposes he deems desirable.

The body of an event-driven program is this loop:

Repeat
Check for occurrence of any event and post it to a queue;
Get next event to be handled from queue;
Process event (may include more event-checking);

Until user chooses to quit.

* The CheckEvents call posts mouse events and keyboard events to an
event queue and updates the cursor. The GetEvent call returns the
first event from the queue, or, if the queue is empty, returns a null
event along with the current mouse position. In passive mode,
GetEvent makes a CheckEvents call prior to inspecting the event
queue. Ininterrupt mode, the Toolkit interrupt handler calls

It-22 MOUSETEXT TOOLKIT

SECTION A -- INTRODUCTION

CheckEvents. If the event queue is full, new events will be ignored
until there is room for them. The programmer can place any event
(except an update event) at the end of the event queue by making a
PostEvent call. The queue can be emptied by making a FlushEvents
call.

Mouse Emulation

The MouseText Toolkit allows an application to have a Pull-Down
Menu/Windowing user interface even if the user does not have a
mouse. The Toolkit supports having the user pull down and select
items from menus, open windows, close windows, select inactive
windows, drag the active window and grow the active window without
ever touching a mouse. A brief summary of how this works follows:

Menu Selection. The user pulls down a menu by pressing
ESC. The arrow keys then allow the user to move fromitem to
item or menu to menu. The up and down arrow keys move
within currently pulled down menu. The left and right arrow
keys move from one menu to another. When the user presses
left or right arrow, the menu to the left or right is displayed and
the mouse pointer moves to the top of the menu. When the
user first presses ESC, the mouse pointer appears at the item it
was last on. The user accepts a menu selection by pressing
either RETURN or any valid key stroke option. The user can
cancel the menu selection process by pressing ESC again.

The Windows Menu. To support user's without a mouse, an
application must have a Windows menu having the names of all
the windows on the desktop. This menu must also have items
for Drag, Grow and Hide (with optional key stroke optimizations
(APPLE D, G and H).

Opening and Selecting Windows. The user pulls down the
windows menu and selects the window s/he wants to open or

activate (bring to the top).

Hiding Windows. The user selects "hide" from the windows
menu (the top most or active window is hidden).

Dragging Windows. The user selects drag from the windows
menu (the top most or active window is available for dragging).

MOUSETEXT TOOLKIT 1 -23

SECTION A -- INTRODUCTION

The window is dragged by using arrow keys. Left, right, up and
down move the window in the obvious direction. The Apple
keys act as amplifiers moving the window further in the obvious
direction. The dragging process is terminated when the user
presses RETURN, ESC or a valid menu key stroke. RETURN
and menu key strokes accept the current position of the
window while ESC returns the window to its original position.

Growing Windows, The user selects "drag” from the windows
menu (the top most or active window is available for growing).
The window is grown by using arrow keys. Left, right, up and
down move the window in the obvious direction. The Apple
keys act as amplifiers growing the window further in the obvious
direction. The growing process is terminated when the user
presses RETURN, ESC or a valid menu key stroke. RETURN
and menu key strokes accept the current size of the window
while ESC returns the window to its original size.

Not supported directly by the Toolkit is any form of text selection. The
application is expected to do this on its own. Guidelines for various
types of selection are available in the Apple // User Interface Guidelines.

Demonstration Programs

The MouseText Toolkit includes two demonstration programs which
illustrate use of the Toolkit and its capabilities and which provide a
mode! for development of your own Toolkit applications. The first
program is entitled DEMO?2; it is written in assembly language and may
be found on Side 1 of the Toolkit disk. The second program is called
DEMO1: it is written in Pascal and may be found on Side 2 of the disk.
Source code versions of both programs are also included.

You can run DEMO2 by booting Side 1 of the MouseText disk and
entering "DEMO2" at the KIX prompt. If you do not have a mouse,
follow the instructions outlined above for using the Toolkit in "Mouse
Emulation Mode" (i.e., press ESC to pull down a window, use the
cursor keys to move through menus, and use the RETURN key to
select an item). If you have a mouse, use it to operate the demo
program in exactly the same way as you would with a Macintosh.

You will learn more about the MouseText demo programs in the next
section.

Il - 24 MOUSETEXT TOOLKIT

B. Using The Toolkit

Overview

The MouseText Toolkit provides Pascal or Assembly language
programmers with an easy means of developing programs with mouse-
controlled menu bars, pull-down menus, and text windows. The Toolkit
consists of a Runtime Module, Pascal interface programs, and a number
of sample and utility programs.

Runtime Module. The MouseText Runtime Module contains the library
of MouseText routines which are called by the MouseText commands.
Itis a binary file which resides on the disk along with the application
program and Kyan Pascal Runtime Library (filename: MTXKIT.ABS).

Interface Programs. The Pascal interface procedures consist of small
subprograms written in Pascal which call the routines in the MouseText
Runtime Module. Each MouseText command has an interface program
which must be "included” in your Pascal program whenever you want to
use the command. The interface program filename is the same as the
command name with a ".I" appended to it.

MouseText Utilities. The utility programs consist of constant and type
definition files; an exit routine which allows the programmer to interface
application programs with the KIX!™ operating environment; and,
several other necessary utility files.

When you use the MouseText Toolkit, you must locate the MouseText
Runtime Module in the highest available place in memory, normally just
below the library. You must also "include” constant definitions, type
definitions, and the Pascal-MouseText interface procedures that your
program requires (Note: be sure you have a copy of each include file
on the program disk.) You then call Toolkit procedures according to
your need for menus, text windows and mouse control.

In assembly language programs, you can directly call procedures in the
MouseText Runtime Module. This is done in a manner very similar to
ProDOS calls. Special interface "include” files are not required.

MOUSETEXT TOOLKIT 1l -25

SECTION B -- USING THE TOOLKIT

The Command Reference Section describes how to call each
command in assembly language.

A good way to become familiar with the capabilities of the MouseText
Toolkit is to study and then run the sample programs provided with the
Toolkit. The demonstration program on Side 2 of the disk is written in
Pascal and is called DEMO1. The second demonstration program is
written in assembly language and is named DEMO2. You are
encouraged to use the source code for these sample programs as
models for your own application programs.

Toolkit Disk Organization

The MouseText Toolkit is shipped on a "flippy” disk. The volume name
of both sides is /MouseText/. The contents of each side are listed in
~ Appendix IV.

Pascal Interface to the MouseText Toolkit

The MouseText Toolkit contains Pascal procedures which are used to
interface your Pascal application programs with the MouseText Runtime
Module. A Pascal “include" file is provided for each MouseText
command. You only need to “include" the procedures that you need
fﬁr your program; you do not need to waste memory by including all of
them.

The Pascal interface procedures are found on side 2 of the MouseText
Toolkit disk in a directory called “PascalTools". Whenever "including”
the Pascal interface procedure in your application program, you must
be sure to specify the full pathname of the included file (e.g., #i
/MouseText/PascalTools/StartDesktop.l) or be sure that the application
program is located in the same directory as the include file (e.g., #i
StantDesktop.l).

Strings

The Toolkit expects strings that have the first byte containing the
character count. 1SO Pascal does not directly support this construct,
but one can easily assign the first byte of any string to the total number
of characters in the string.

II-26 MOUSETEXT TOOLKIT

SECTION B -- USING THE TOOLKIT

Memory Organization

When using the Toolkit, the runtime memory is organized as follows:

$0 $800 Unavailable.

$800 $1FFF Heap starts at $800 and grows up.
Stack starts at $1FFF and grows down.

$2000 $3FFF High resolution screen.

$4000 $60FF Program space.

$6100 $9000 MouseText Runtime Module.

$9000 $BEFF Kyan Pascal Runtime Library (LIB).

Large Applications

There are several ways of developing large applications using Kyan
Pascal and the MouseText Toolkit. With the standard Pascal Library
(LIB) and Toolkit loaded, there is 8.25K of space left for the application
program. To increase the available program space, one or more of the
following options are available.

1. Chain programs together. The demonstration program
included with the Toolkit (DEMO1.P) is an example of a chained
program. The menus are initialized in DEMO1.P while the main
loop is contained in DEMO1A.P. Datais passed between the
programs with global variables which are declared in the same
order and manner in all chained programs (Please refer to the
Kyan Pascal User Manual for more information on Chaining
Pascal programs).

2. A Graphics Utility Toolkit is available from Kyan Software
which allows you to move your application program into the
alternate 64K bank of memory. This technique saves about
12K in the primary bank.

3. The Pascal Runtime Library source files and a code
optimizer are available from Kyan Software. By compiling using
the Library sources and running the code optimizer, you can
compress your object code files by as much as 50 percent.

MOUSETEXT TOOLKIT H-27

SECTION B -- USING THE TOOLKIT

Data Structures and Constant Definitions

The Pascal interface procedures require specific data structures to
function properly with the MouseText Runtime Module. These data
structures are already defined in a file named MTXKIT.TYP found on
side 2 of the Toolkit disk.

The disk also contains a file named MTXKIT.CON where constant
values are defined for the maximum:

o size of a menu title string,

o size of a menu item string,

o number of items in a menu, and
0 number of menus.

These constants are used in the type definitions to allocate the proper
amount of storage for the features used. MTXKIT.CON has defauit
values assigned to each constant. However, you can open this text file
and change these default values to suit the needs of your application.

MouseText Runtime Module

The MouseText Runtime Module is 12K in size and is called
MTXKIT.ABS . It can be found on both sides of the Toolkit disk.
This Module must be loaded before any Toolkit commands can be
executed.

The Toolkit contains a procedure called BLOAD.I which is used to
load the Runtime Module into memory at location $6100. The BLOAD.I
file must be “included" in the procedure definition section of your
application program (e.g., #1 BLOAD.I). The Module is then loaded
when you call the procedure in the body of the application program
(e.g., BLOAD('MTXKIT.ABS")).

The location of the Runtime Module can be changed using a BASIC
program called MAKEABS. This program is used in conjunction with
the relocatable file MTXKIT.OBJ to create a new absolute file. The
new absolute file will be a Runtime Module relocated to the address
specified. The BLOAD procedure is used in the same way as
described above to load this new Runtime Module at the new address.

It-28 MOUSETEXT TOOLKIT

SECTION B - USING THE TOOLKIT

The Pascal application program must be origined after the high
resolution screen. To do this, place the following instructions at the
start of your Pascal program (before the Pascal "program"” definition).

#A
_UsesHires
#

Once the Runtime Module is loaded, the Toolkit must be initialized.
Then, all MouseText commands are available to the programmer.

Assembly Language Interface

Assembly language programs interface directly with the Toolkit in a
manner very similar to ProDOS calls. The same Toolkit Runtime Module
(MTXKIT.ABS) is used. This module must be loaded before any Toolkit
commands can be executed.

A procedure called LOAD.!is used to load the Runtime Module into
memory. This procedure must first be "included" in the procedure
definition section of your application program (e.g., #i LOAD.I). Then,
you must call LOAD.| in the body of your program (e.g.,
LOAD('MTXKIT.ABS')) to load the Runtime Module at location $6100.

Another file, TOKNIZ.1, must be "included" in the program before the
LOAD.I file. This file sets the proper pathname.

The location of the Runtime Module can be changed using a BASIC
program called MAKEABS. This program is used in conjunction with
to the relocatable file MTXKIT.OBJ to create a new absolute file (i.e.,
a new MTXKIT.ABS). This new Runtime Module will be relocated to the
address specified. The LOAD procedure is used as described above
to load this new Runtime Module at the new address.

Once the Runtime Module is loaded, the Toolkit must be initialized.
Then, all MouseText commands are available to the programmer.

All calls to the MouseText Toolkit go through a single entry point
named Toolkkit. In addition to necessary housekeeping functions, the
main entry point of the MouseText Toolkit saves the X and Y index

MOUSETEXT TOOLKIT 1I-29

SECTION B -- USING THE TOOLKIT

registers and saves the locations in zero-page which it uses for
temporary storage.

The programmer can have the assembly language program exit to
ProDOS or Kyan's KIX environment by “including” the EXIT.I routine
found on side 1 of the Toolkit disk. This routine is “included"” where the
application program exits.

The exit routine for the Toolkit also performs housekeeping functions,
as well as: restoring the contents of the zero-page locations; restoring
the previous contents of the X and Y index registers; and, setting the
carry flag to reflect the error status. The exit routine also loads the error
status into the accumulator, thereby setting the 6502's N and Z flags.

Syntax of Machine Language Calls

A Machine language call to the MouseText Toolkit looks like the
following example:

JSR TOOLKIT ;main Toolkit entry point

DB CMDNUM :command number of routine called
DW CMDLIST ;pointer to parameter list

BNE ERROR ;optional error handling

After a return from a call to the Toolkit, the value of the program counter
is six bytes beyond the location of the calling JSR, and the accumulator
contains the error code. The index registers and the stack pointer are
unchanged. If the called routine generated an error, the carry bit is on
and the zero bit is off; if it did not generate an error, the zero bit is on
and the carry bit is off. Table B-1 gives a summary of the return status
for Toolkit calls.

Note: Calls to the MouseText Toolkit have the same syntax as calls to
the ProDOS Machine Launguage Interface, which is described in the
ProDOS Technical Reference Manual,

II-30 MOUSETEXT TOOLKIT

SECTION B - USING THE TOOLKIT

Table B-1. Processor Status After Return from Toolkit.
A bit value of X means the bit is undefined.

Processor Accumulator Program
Status Bits Contents Counter
NZCDV

0 Calling JSR + 6

Successtul Call 0 x
0 x Error Code Calling JSR +6

010
Unsuccessful Call 001

Final Note: The Assembler included on the Kyan Pascal disk is not
intended to provide full support for Assembly Language programming
using this Toolkit. For a much more powerful Assembler, we suggest
that you try Kyan's Macro Assembler.

Programming with the Toolkit

The MouseText Toolkit is designed to run in either the KIX or ProDOS
environment. Calls are made via a machine language interface.

One of the easiest ways to wiite an application using the Toolkit is to
start with an existing program and modify it. This Toolkit provides an
extensive example of both a Pascal and assembly language application.
These sample programs do almost the same things, exercising most of
the features of the Toolkit. The examples are also heavily commented
to help you understand how they work.

Programs written to use the MouseText Toolkit all have the same flavor.
They start with an initialization section and consist of a Main Loop which
reads events and handles them according to the kind of event they are.
An outline follows describing what a program needs to do.
Initialization

Initialize program variables

StartDeskTop (start up the Toolkit)

InitMenu (specify special character locations)
Set up menus

ShowCursor (display the mouse cursor)

MOUSETEXT TOOLKIT I - 31

SECTION B -- USING THE TOOLKIT

Main Loop
The main loop is as follows:

REPEAT
Get an event
Process the event
UNTIL user quits

Process the Event

if the event is a button-down event:
Find the portion of the screen the mouse is in and
initiate the appropriate operation.

If the mouse is in an uncovered area of the desktop:
Do nothing.

If the mouse is in the menu bar:
Call the Toolkit menu selection routine, and
execute the menu handling.

If the mouse is in the drag bar of any window:

If the window is not the top most window, select it but
do not redraw it. Call the Toolkit DragWindow routine.
If the window moved, clear any update events (see
below) If the window did not move, and it was selected
in step one, redraw it.

If the mouse is in the grow box of the front window:
Call the Toolkit GrowWindow routine, and if the size
changed, adjust the scrollbars, and refresh the
contents of the window.

If the mouse is in the close box of the front window:
Call the Toolkit CloseWindow routine.

If the mouse is in the content area of the front window:
Find which part of the content area it is in.

Il - 32 MOUSETEXT TOOLKIT

SECTION B - USING THE TOOLKIT

If the mouse is in a scrollbar:
Determine which area of the scroll bar it is in
and scroll appropriately.

If the mouse is in the thumb:
Call the Toolkit TrackThumb
routine, and if the thumb
moved, refresh the window to
reflect the new thumb position
and call UpdateThumb.

if the mouse is in the page-left, page-

up, page-right, or page-down area:
Scroll a full window in the
appropriate direction and call
UpdateThumb.

If the mouse is in the left-, up-, right-, or
down-arrow:
Scroll one line in the
appropriate direction and call
UpdateThumb.

If the mouse is not in a scrollbar:
Execute the appropriate procedure for the
window (e.g., selection).

If the mouse is in the content area of an inactive window:

Make it the front window.

If the event is a keypress:

Iif the key is a shortcut keystroke, find which menu item
it corresponds to and execute the menu handling.
Otherwise, handle the key according to the context of
the application.

If the event is an update event:

Refresh the content area of the specified window.

If the event is an application event:

Handle according to the context of the application.

MOUSETEXT TOOLKIT 1l -33

SECTION B -- USING THE TOOLKIT

Menu Handling:

Each menu has a user-assigned menu ID and its menu items
are numbered sequentially, beginning at 1. When a menu is
selected, the program performs a specific task according to this
information, and then de-highlights the menu by calling the
Toolkit HiliteMenu routine.

PseudoCode Program Listing

The outline shown above, describing the programming sequence for
using the mouse and the MouseText Toolkit, is expanded with the
following pseudocode listing of an application program. The
pseudocode program is an example of the way the Toolkit is intended
to be used. The program illustrates the following functions:

o Start the desktop

o Set up menus

o Set up the cursor

o Track the mouse

o Display a pull-down menu
o Open a window

o Select a window

o Drag a window

o Grow a window

o Scroll the contents of a window
o Close a window

The Pascal demonstration programs DEMO1.P and DEMO1A.P follow
the program flow shown below but are not identical. To find out exactly
what the sample programs look like, you should list them from the disk.

The user stops this program by selecting the "Quit” item in the menu.

Il - 34 MOUSETEXT TOOLKIT

SECTION B -- USING THE TOOLKIT

Here is the pseudocode listing of the program

call StartDeskTop
call InitMenu

call SetMenu

call ShowCursor
call InitWindowMgr

quitflag := false
while not quit flag do

call GetEvent
case eventtype of

button_up, no_event, drag_

do nothing
keypress: call HandleKeys

; start up the Toolkit

; allocate screen save space

; set up our menus

; turn on cursor

; allocate screen save space for
window

; used to terminate program

; main loop
; get the next event in event queue
; base action on type of event returned

event, open_apple_drag_event :

; we are ignoring these
; handie keyboard input from user

button_down: call HandleButton ; handie button down on mouse

end case
end while
do any clean up
end program

HandleKeys:
if open_apple_key down do
call MenuKey
call MenuCase
end if
return

HandleButton
call FindWindow
case event_location of
in_desktop: do nothing
in_menu: call HandleMenu
in_content: call DoContent
in_drag_bar: call Dragit
in_grow: call DoGrow
in_close: call Closelt
end case
return

; end of main loop

end of program

character input is enter here
check for commands
translate into menu command
and execute it

; where did button go down ?
; base action on where it occurs

; menu bar, menu operation

; content region, find out more

; drag bar, drag the window

; growth region, grow the window
; close the top window

MOUSETEXT TOOLKIT

Il-35

SECTION B -- USING THE TOOLKIT

HandleMenu

call MenuSelect ; have Toolkit perform selection
call MenuCase ; execute selection
return
MenuCase ; execute the menu selection
if menu_id + 0
then do nothing ; nothing selected
else do
case menu_id & menu_item
do corresponding operation
end case
call HiliMenu(0) ; task is done, turn off highlight
return
DoContent ; button down inside a window
call FrontWindow ; find front window id
if button_down does not occur in front window
then call SelectWindow ; bring that window to front
else do
call ScreenToWindow ; use local coordinate
call FindControl ; find if it occur in control

case point_is_in
in_content: depend on application, nothing here
in_vertical_scroll_bar, in_horz_scroll_bar :
call ScroliBar ; perform scrolling
in_dead_zone: do nothing
end case
return

ScrollBar
case where_in_scroll_bar
arrow, page:
scroll 1 or nlines
call UpDateThumb ; update thumb position
thumb:
call TrackThumb . let Toolkkit track thumb movement
if thumb_moved then scroll accordingly
end case
return

II-36 MOUSETEXT TOOLKIT

SECTION B -- USING THE TOOLKIT

Draght
call SelectWindow ; bring window to front if it is in back
call DragWindow ; let Toolkit follow the drag
return

DoGrow

let Toolkit follow the growth
if size of window changed extra work

call GrowWindow
if size_changed do

call SetCtiMax thumb position,etc may be changed

call ActivateCi scroll bar may become active/inactive

call WinBlock window is blank afterwards, update it
return

Apple Il Keyboard Mouse Emulation

Although the menu and window capabilities of the MouseText Toolkit
are normally used with the AppleMouse 1l, it is possible to run a program
using the Toolkit on a computer that doesn't have a mouse. Ris also
possible to use the keyboard to control the menus and windows, even
on a computer that has a mouse. When in mouse emulation mode, the
Toolkit still responds to movement of the mouse and mouse button
operation.

The first method of mouse emulation is called Keyboard Mouse Mode.
It enables the application to support menu selection and window
manipulation with either a mouse or keyboard commands.

The second method of mouse emulation is called Safety-Net Mode. It
is provided specifically for use with a computer that does not have a
mouse.

Keyboard Mouse Mode

The Keyboard Mouse Mode of mouse emulation enables applications
to substitute keyboard commands for operations that normally require a
mouse. The operations which can be performed in this mode are:

o Selecting from a menu,
o Dragging a window, and
o Growing a window.

MOUSETEXT TOOLKIT i -37

SECTION B -- USING THE TOOLKIT

To perform one of these operations in the Keyboard Mouse Mode, the
application program must first call the KeyboardMouse command. This
command has no parameters; its purpose is to instruct the Toolkit to
perform the next command(s) in Keyboard Mouse Mode. Once in this
mode, the Toolkit commands are called in the normal manner (i.e.,
MenuSelect, DragWindow, or GrowWindow).

There is an alternative way for the application to get into Keyboard
Mouse Mode, and that is by calling the MenuKey command with ESC as
the keystroke. This has the same effect as calling KeyboardMouse
followed by MenuSelect (i.e., it initiates a menu select operation in
Keyboard Mouse Mode).

The choice of keypress commands for mouseless operations is
specified in the application program by the programmer. While you can
choose any keypress sequence you desire, the recommended key
sequences are:

Table B-2. Keyboard Mouse Commands

—Command —Operation
ESC display menu
OPEN-APPLE-D
or drag a window

SOLID-APPLE-D

OPEN-APPLE-G
or grow a window
SOLID-APPLE-G

When the Toolkit is in the Keyboard Mouse Mode, it is performing one
of these three operations. It remains in Keyboard Mouse Mode until
the operation is completed. Unlike the Safety-Net Mode, the user
doesn't have to hold a key down.

When the user initiates the Keyboard Mouse Mode, the Toolkit makes
the cursor visible, even if it was previously hidden or obscured. When
the keyboard operation is completed, the Toolkit returns the cursor to
its previous state of visibility.

Il - 38 MOUSETEXT TOOLKIT

SECTION B -- USING THE TOOLKIT

When a menu is selected, the Toolkit records the position of the cursor
(i.e., the item that is highlighted) and returns to that position (and item)
when the user selects the menu again.

In Keyboard Mouse Mode, the cursor keys move the cursor around on
the display. If the user is doing a drag or grow, the OPEN-APPLE key
acts as an accelerator for the cursor keys. With the OPEN-APPLE key
down, pressing left or right arrow keys moves the cursor sideways by 10
spaces at atime. Likewise, the up and down arrow keys move the
cursor up and down 5 rows at a time.

The user can terminate a Keyboard Mouse Mode operation in four
different ways:

1. Pressing the ESC key.

The Toolkit cancels the operation and returns
the cursor to its former position.

2. Pressing the RETURN key.

The Toolkit completes the operation and returns
the cursor to its former position.

3. Pressing a valid command key

The Toolkit terminates the operation and then posts
an event for the command key. If the operation was a
menu selection, the Toolkit cancels the operation. If it
was a drag or grow window, the Toolkit completes the
operation. In all cases, the Toolkit returns the cursor to
its original position.

4. Pressing and releasing the mouse button.

The button up event signals completion of the
operation. It initiates execution of the selected
command, just as if the mouse had been used
throughout.

MOUSETEXT TOOLKIT 11-39

SECTION B -- USING THE TOOLKIT

Safety-Net Mode

The Safety-Net Mode is intended specifically for computers which do
not have a mouse. In this mode the Toolkit uses inputs from the
keyboard in place of the usual mouse inputs (i.e., inputs received from
mouse movements of the cursor around on the desktop and selection
of menus).

When the Toolkit is in Safety-Net Mode, the application program works
normally; all command calls are the same. The program need not take
into account the fact that there is no mouse.

The user puts the Toolkit into Safety-Net Mode by pressing and
holding down the OPEN-APPLE key and then pressing and releasing
the SOLID-APPLE key. The Toolkit generates a click to acknowledge
that it is in Safety-Net Mode. The Toolkit remains in Safety-Net Mode as
long as the user continues to hold down the OPEN-APPLE key.

In Safety-Net Mode, the cursor keys take the place of the mouse in
moving the cursor. Each time you press a cursor key, the cursor moves
one space in the direction indicated on the key. The cursor keys do not
have wrap-around; when the cursor has moved to the edge of a screen,
pressing the same cursor key will have no effect.

in Safety-Net Mode, the SOLID-APPLE key takes the place of the
mouse button. Pressing the SOLID-APPLE key is like pressing the
mouse button.

Note: In Safety-Net Mode, the Toolkit reads the cursor keys and the
SOLID-APPLE key even if the application program has specified that
the keyboard is to be ignored.

I- 40 MOUSETEXT TOOLKIT

C. Startup and Cursor
Commands

Startup Command Overview

Startup commands are called in the application program to set up the
operating environment for the MouseText Toolkit. For example, your
application program will call the StartDeskTop command to activate the
mouse and set the Operating Mode for the Toolkit. Later, it will call the
StopDeskTop command to deactivate the mouse and the Toolkit.

Pascal programs can also call the PascintAdr command to get the

address of the Toolkit's interrupt handler so that the Pascal interface
can install a custom interrupt handler.

Startup Command List

No, Name Description

0 StartDeskTop Activate mouse and Toolkit routines.

1 StopDeskTop Inactivate mouse and Toolkit routines.

17 PascintAdr Get interrupt handler address for
Pascal.

47 SetUserHook Set address of interrupt handler.

19 Version Return Toolkit revision numbers.

48 Keyboardmouse Condition Toolkit to perform next

operation in emulation mode.

MOUSETEXT TOOLKIT I - 41

SECTION C -- STARTUP AND CURSOR COMMANDS

Startup Programming Notes
Follow this sequence of steps to start the mouse:

(1) (For Pascal only) Call PascintAdr to get the address of the Toolkit's
interrupt handler.

(2) (For Pascal only) Pass the interrupt address to the mouse firmware
by calling SetMouse as described in Appendix I, “The Mouse Firmware
Interface.” Mouse Mode should be set to passive.

(3) Call Startdesktop with the Uselnterrupts parameter set the way you
want it for your program.

(4) (Optional) Call SetUserHook to pass the addresses of your
program'’s interrupt handlers, if any, to the Toolkit.

The Toolkit saves the interrupt state of the machine when your program
calls the StartDeskTop command. When the program calls the
StopDeskTop command, the Toolkit sets the state of the machine to
the state saved by StartDeskTop.

When you use the Toolkit in Interrupt Mode, The Toolkit provides the
interrupt handler. In addition, the Toolkit allows the application program
to have interrupt handler subroutines that are called by the Toolkit. The
program passes each subroutine’s address to the Toolkit as a
parameter by calling the SetUserHook command. This feature makes it
possible for the application program to perform tasks at interrupt time.

A user hook routine that is called at interrupt time cannot call most
Toolkit commands. Doing so could put the Toolkit into an unknown
state. If a program needs to generate calls to the Toolkkit because of an
interrupt, the interrupt routine should set a flag that the program checks
during its main polling loop.

Il -42 MOUSETEXT TOOLKIT

SECTION C -- STARTUP AND CURSOR COMMANDS

Cursor Command Overview

The cursor is a symbolic character that moves on the display screen as
the user moves the mouse. Cursor commands allow the programmer to
select which MouseText character will be displayed as the cursor and to
turn the cursor on or off.

The MouseText Toolkit can use either a mouse-controlled cursor or a

keyboard-controlled cursor. Apple Il Keyboard Mouse Emulation is
described in Section A.

Cursor Command List

No., Name Descrigtion

2 SetCursor Sets the character used for displaying
the cursor

3 ShowCursor Makes the cursor visible

4 HideCursor Makes the cursor invisible

44 ObscureCursor Makes the cursor invisible until the
mouse moves

MOUSETEXT TOOLKIT I -43

SECTION C -- STARTUP AND CURSOR COMMANDS

This page left blank for your notes.

Il- 44 MOUSETEXT TOOLKIT

D. Event-Handling
Commands

Overview

Events are the means by which a user communicates with the
MouseText Toolkit. Events can be mouse "clicks”, keyboard
keypresses, or other actions. Whatever form an event takes, itis a
signal to the Toolkit to initiate a sequence of actions (e.g., display a
menu).

Types of Events

The MouseText Toolkit deals with four major kinds of events:

Mouse Events
o Mouse button pressed down
o Mouse button released
o Mouse moved with the button held down (dragging)

Keyboard Events

o0 Keypresses

Update Event
o Special case events used in applications with

windows that can't be refreshed automatically.

Application Events
o Optional events which can occur within an
application program.

Precedence of Events

If the mouse button is down, the Toolkit ignores keypresses. Thus,
mouse events have precedence over keyboard events.

MOUSETEXT TOOLKIT 11-45

SECTION D -- EVENT-HANDLING COMMANDS

Event Queue and Processing

The Toolkit's Event-Handling commands maintain an event queue for
mouse and keyboard events. The CheckEvents command posts
events in the queue and updates the mouse position. The GetEvents
command puts the most recent event into the queue. it events occur
simultaneously, each event is stored in a queue until it is called for
processing.

Event-Handling Command List

No. Name Description

5 CheckEvents Reads the mouse, moves the cursor to the
new position, and posts event, if any.

6 GetEvent Gets next event; if none, gets mouse position.

46 PostEvent Posts an event in the event queue.

7 FlushEvents Empties the event queue.

8 SetKeyEvent Specifies whether Toolkit handles keyboard
event.

21 PeekEvent Returns event data without removing it from
the queue.

Il - 46 MOUSETEXT TOOLKIT

SECTION D -- EVENT-HANDLING COMMANDS

Event Programming Notes

1. The CheckEvents command posts mouse events and keypress
events in the queue and updates the mouse position. To detect
mouse events, the program calls the GetEvent command.
CheckEvents is not normally used because it is called automatically by
GetEvent in passive mode and by the Toolkit in interrupt mode.

2. With the Toolkit running in the Passive Mode (Referto Appendix |
for a description of "Passive” and "Interrupt” Modes), the GetEvent
command automatically issues an internal call to the CheckEvent
command. If the event queue is empty, the GetEvent command simply
returns the most recent mouse position.

3. Inthe Interrupt Mode, the Toolkit's interrupt handier calls the
CheckEvent command 60 times per second, synchronized with the
display vertical blanking (VBL).

4. The application program must call the CheckEvent command or
GetEvent command often enough to obtain smooth cursor motion.

5. The CheckEvent command is the only command that reads the
mouse -- the cursor will never move if the CheckEvent command is
never called. The CheckEvent command can be called directly,
indirectly (through the GetEvent command), or by the Toolkit itself (in
the Interrupt Mode).

6. The application program can put its own events into the event
queue by calling the PostEvent command.

7. If the event queue fills up, the Toolkit ignores new events until there
is room in queue. To empty the queue, the program can call the
FlushEvents command.

8. Frequent calls to the CheckEvents command provides the program
with a type-ahead feature. By posting keyboard events in the event
queue, they can be stored until the program is able to process them.

MOUSETEXT TOOLKIT 1l -47

SECTION D -- EVENT-HANDLING COMMANDS

This page left blank for your notes.

Il - 48 MOUSETEXT TOOLKIT

E. Menu Commands

Overview

Menus are the technique by which a user can view and select a
command option. Rather than having to remember a keyboard
command structure, the user simply moves the cursor to a menu title,
"pulls” or "pops" down the menu, and selects a command from the
alternatives listed.

The user doesnt literally pull a menu down. Instead, the menu "pops”
down automatically when the application program determines that the
user has moved the cursor onto a menu title and pressed the mouse
button. As the user moves the cursor down the menu (with the mouse
button still depressed), the Toolkit highlights each menu item in inverse
video as the cursor passes over it.

When the user releases the mouse button on top of a particular menu
item, that item is selected. The menu then disappears. To show the
user that something is happening, the Toolkit leaves the menu title in
the menu bar highlighted. The title highlighting is turned off as soon as
the application program finishes performing the selected operation.

Figure E-1 displays the components of a menu. The visible
components are a menu bar (which appears at the top of the display
and shows the menu titles) and menu items (which appear, one to a
line, when a menu pops down). The invisible components are the
menu ID numbers and the menu item numbers.

Menu ID numbers can be in any order as long as they are between 1
and 255. Menu item numbers are always sequential starting with 1.
Both numbers are returned to the application program when a menu
item is selected.

MOUSETEXT TOOLKIT 11 -49

SECTION E -- MENU COMMANDS

Figure E-1. Menu Components.

Menu Item
Numbers

Menu 1.D.
1 2 3 L Numbers
) T¢
File/Print View | |~Menu Bar
|
1 |
9 Undo Menu Title
3 Cut
4 | Copy < Menu item
|
2 |
6 Paste i
7 Clear :
5 Show Clipboard :
|
. |
I
|
|
|
|
i

I1-50 MOUSETEXT TOOLKIT

SECTION E -- MENU COMMANDS

The Toolkit Menu Commands provide menu display and selection
functions. Once the menu data structure has been set-up with the
SetMenu command, the MenuSelect command will allow the following
actions:

o Display a menu

o Track the mouse and move the cursor

o Highlight menu items when the cursor moves to
them

o Return with the menu 1D and item numbers selected

o Leave the menu title highlighted

Other menu commands inhibit menus or menu items and display a
checkmark beside specified menu items.

Menu Command List

No, Name Description
9 InitMenu Allocates memory for temporary screen save.
10 SetMenu Initializes a menu bar data structure and

displays the menu bar.

11 MenuSelec Interacts with mouse to display menu and
return selection, if any.

12 MenuKey Selects a menu item to match a keypress.
13 HiLiteMenu Turns highlighting of menu title on or off.

14 DisableMenu Inhibits highlighting and selection over a

whole menu.

15 Disableltem Inhibits highlighting and selection of a menu
item.

16 Checkltem Turns checkmark next to item on or off.

20 SetMark Sets the character to use as checkmark.

MOUSETEXT TOOLKIT 1l - 51

SECTION E -- MENU COMMANDS

Programming Notes
Keys in Menus

The MenuKey command allows programmers to use keypresses to
select menu items. You use a combination keypress consisting of a
letter key plus one of the Apple keys. Menu items which can be
selected in this way are indicated by the OPEN-APPLE or SOLID-
APPLE icon and the specified letter or other key displayed to the right
of the menu item. If an item can be selected using either type of apple
icon, the OPEN-APPLE icon appears with the letter in the menu.

You can also specify a control character as the keypress which selects a
menu item. This is done by setting either Character 1 or Character 2 in
the Menu ltem Block to any value from 1 to 31, corresponding to a
control character. (Menu Item Blocks are defined in the Technical
Reference Section under the SETMENU command.) You do not need
to set the modifier bits in the Item Option Byte.

When you specify a control key to select an item, the Toolkit displays a
diamond icon and the key to the right of the menu item. Only the value
in Character 1 will be used, even if you designated Character 2 a control
character.

Keypresses with the CONTROL key are easier to touch-type than
those with the Apple keys. You should continue to use the Apple-key
combinations though, for most items, and reserve the use of control
keys for high-speed or repetitive functions where the touch-type
command is important.

Users expect control keys to be used for the same functions for
different products. Table E-1 shows the menu functions which Apple
has defined for most of the control keys.

When you press a key other than one of those specified in the menu,
the Toolkit generates a beep.

II-52 MOUSETEXT TOOLKIT

SECTION E -- MENU COMMANDS

Table E-2. Control keys for Menu ltems

ControlKey Function

CTRL-B Boldtace

CTRL-C Copy

CTRL-D Delete

CTRL-E Editing type, insert or overstrike cursor
CTRL-F Forward delete
CTRL-H Left arrow

CTRL Tab

CTRLJ Down arrow

CTRLK Up arrow

CTRL-L Begin or end underline
CTRL-M Return

CTRL-P Print

CTRL-U Right arrow

CTRL-V Paste

CTRL-X Cut

CTRL-Z Zoom

CTRL{ Escape

Other Notes

1. When the user moves the cursor onto a title in the menu bar and
presses the button on the Mouse, the application program calls the
MenuSelect command. This command displays the selected menu and
tracks the mouse as long as the mouse button stays down.

2. An application program can disable individual menu items or an
entire menu. Disabled items or menus are not highlighted when the
cursor moves over them, and they cannot be selected by the user.

3. The SetMenu command is used in the application program to supply
the Toolkit with the data structures needed to display menus. The
program can call SetMenu during the course of operation to change the
contents of menus (menu data structures are described in the
Technical Reference Section).

MOUSETEXT TOOLKIT i -53

SECTION E -- MENU COMMANDS

4. The FindWindow command is used to detect the pressing of the
mouse button in row 0 (the menu bar). When this event is detected,
the application program calls the MenuSelect command.

5. The MenuSelect command takes care of the entire menu selection
process. It displays the menus and tracks the mouse cursor position for
as long as the user holds down the mouse button. If the user selects a
menu item, the MenuSelect command highlights the menu's title in the
menu bar and returns the menu item number and menu ID number to
the application program. If the user doesn't select a menu item, the
MenuSelect command returns a menu ID value of 0.

6. Highlighting of the selected menu title while the selected operation
is being performed provides useful feedback to the user. When the
operation is complete, the menu title is "un-highlighted" by calling the
HiLiteMenu command with the menu ID set to 0.

7. For menu items that are used often, the application program can
provide the user with fast item selection. This is done by defining
keypress equivalents for the items in the menu and giving the user an
option to press keys instead of moving the mouse. When the
GetEvent command returns a keypress, the application program calls
the MenuKey command. MenuKey determines the menu ID and item
number by searching the menu data structures for a matching key.
When it finds a match, it highlights the selected menu title the same way
MenuSelect does. After the operation has been performed, the
program uses the HiLiteMenu command to turn off the highlighting.

8. The application programmer must ensure that menu titles do not
extend past the right edge of the screen. The programmer must make
sure that a menu's width is always less than the screen width minus two
(38 or 78), and that a menu's length is always less than screen length
minus two (22). Otherwise, the menu routines can write into main
memory when they should be writing to the display, thereby clobbering
screen holes or program memory.

Il - 54 MOUSETEXT TOOLKIT

F. Window Commands

Overview

The Toolkit Window Management commands provide the functions
needed to set up and display windows. When the window information
structure has been set up with the OpenWindow command, you can
use these commands to:

select a window

bring the window to the front of the display
put text into the window

drag the window

change the window size

close the window.

000000

Window Command List

No, Name Descriplion

22 InitWindowMgr Initializes the open window list and buffer
area.

23 OpenWindow Passes the Toolkit a pointer to a Window
Information Data Structure.

24 CloseWindow Deletes a window.

25 CloseAll Deletes all windows.

45 GetWinPtr Gets the Pointer to the Window.
Information Data Structure (not applicable
to Pascal).

26 FindWindow Finds the window region that contains a
given name.

27 FrontWindow Returns the ID number of the front
window.

28 SelectWindow Makes a window the front (active) window.

29 TrackGoAway Returns whether the mouse button was

released in a Go-Away Box.

MOUSETEXT TOOLKIT Il -55

SECTION F -- WINDOW COMMANDS

Window Command List (cont.)

No. Name Description

30 DragWindow Displays window outline during drag, then
redisplays window.

31 GrowWindow Displays window outline during grow,

then redisplays windows.
32 WindowToScreen Converts window coordinates to screen
coordinates.

33 ScreenToWindow Converts screen coordinates to window
coordinates.

34 WinChar Wirites a character in a window.

35 WinString Writes a string in @ window.

38 WinText Writes text in a window.

36 WinBlock Wirites a block of text in a window.

37 WinOp Clears all or part of a window.

Programming Notes

Components of the Window

Window commands in the MouseText Toolkit make it possible for
programs to use the mouse to control multiple windows on the
desktop. Figure F-1 shows the various aspects of MouseText
windows.

Drag Bar

The drag bar is used to move the window around on the display. To
move the window, the user first positions the cursor on the drag bar and
depresses the mouse button. Then, the user moves the cursor and
"drags” the window to the desired position.

Close (Go-Away} Box

The drag bar also contains the window Close (or Go-Away) Box. To
close the window, the user positions the cursor on the Close Box and
clicks the mouse button.

Il-56 MOUSETEXT TOOLKIT

SECTION F - WINDOW COMMANDS

Menu Bar

Drag Bar

Vertical Scroll Bar —»{

Horizontal Scroll Bar

Grow Box

The lower-right corner of the window cuntains the Grow Box which is
used to change the size of a window. To do this, the user positions the
cursor on the Grow Box and depresses (and holds down) the mouse
button. The user then moves the cursor to shrink or enlarge the
window. The display shows the new size of the window as an outline
which moves around as the mouse moves. When the user releases the
mouse button, the Toolkit redisplays the window with its new size but
without contents. The program puts appropriate text into the re-sized
window by calling window commands or its own window subroutines.

MOUSETEXT TOOLKIT 1I-57

SECTION F -- WINDOW COMMANDS

Window ID Numbers

Each open window must have a unique ID number within the range of 1
through 255. An attempt to open a second window with the same 1D
number as an aiready opened window will return an error.

A window ID number of 0 is not valid because the FrontWindow
command retumns ID = 0 when a window is not opened. An attempt to
open a window with an ID number of 0 will return an error.

With some of the Toolkit commands, you can use ID number = 0 to
indicate the front window. If there is no front window, these commands
will return an error. The commands which interpret ID = 0 to equal to the
front window, are:

o CloseWindow o GetWinPtr

o SelectWindow o DragWindow

o Grow Window 0 WindowToScreen
o Screen To Window o WinChar

o WinString o WinText

o WinBlock o WinOp

Note: The use of ID = 0 to select the front window is only a
convenience. You can use the actual ID number of the front window
instead.

Window Coordinate Systems

Three different coordinate systems are used with window commands.

Mouse coordinates 0to79 0to23

Screen coordinates -80 to 159 -24 to 47
Window coordinates -80 to 159 -24 to 47

The mouse coordinates correspond to the absolute range of the
display screen and are expressed as unsigned byte quantities. The
window and screen coordinates are represented as two-byte signed
quantities.

Il -58 MOUSETEXT TOOLKIT

SECTION F -- WINDOW COMMANDS

It is important to be aware of the ranges of the signed two-byte
quantities because the Toolkit routines make certain assumptions
about the high byte. The only time the high byte is not simply the sign
extension of the low byte's bit is when the value is in the range 128 to
159 for the X-axis. The Y-axis quantities are also two-byte quantities for
the sake of consistency. The only legal values of the high byte are $00
and $FF.

To be visible, characters must be in the top window, and their screen
coordinates must be in the range from 0 to 79 in the X-axis and 0 to 23
in the Y-axis. What's more, if the width of the window is W and the
length of the window is L, characters are visible only if their window
coordinates are in the range from 0 to W - 1inthe X-axisand Oto L - 1in
the Y-axis.

The scroll bars are considered to be in the content area. Thus, if the
vertical scroll bar is used, the useful content area range on the X-axis is
from 0 to W - 3. Similarly, if there is a horizontal scroll bar, the useful
content area range on the Y-axisisfromOtoL - 2.

Note: If a Grow Box is present, the vertical scroll bar space is used
even if the scroll bar is not present. This ensures that the useful
content area is always rectangular.

There must be at least one character in the window's content area for a
Window Information Data Structure to be displayed correctly. The
window length must be at least one, or 2 two if there is a horizontal scroll
bar. Window width must be at least one, or three if there is a vertical
scroll bar or a Grow Box. The maximum window width is 80. The
maximum length is 22 for normal windows, 23 for dialog windows.

Note: ltis a good idea to keep window width greater than 3.
Otherwise, you may have a window whose title does not show or a
window that cannot be dragged. In this situation, the window could
only be closed, since there is only space for the Close Box.

A window can be placed in any position on the screen, including a
position that makes part of the window invisible. This explains the
ranges of the screen and window coordinates. Even though the
ranges normally used are positive, you can get meaningful negative
values when you convert from one coordinate system to another. For

MOUSETEXT TOOLKIT Il -59

SECTION F -- WINDOW COMMANDS

example, a window's drag bar is always in the negative range of the
window's Y-axis.

Note: Windows are output-only devices. The Toolkit will not copy their
contents into user memory. The application program must ensure that
the information in the content memory area and the contents of the
window agree.

Window/Document Information

The only document display feature built into the Toolkit is a screen
image of the text. Each line is padded with spaces on the right, and
there are no special line delimiters. In addition, the number of
characters per line is fixed.

To support the document display, the window management part of the
Toolkit needs certain information about the document. This information
is in the Document Information Data Structure (Dinfo) as described in
Section | (Pascal Data Structures). The location of the window in the
document is specified by Dinfo quantities Dx and Dy (see Figure F-2).
The window can be placed anywhere within the document. In this
sense, the document dimensions can be considered as a fourth
coordinate system in which the window coordinates are embedded.

Other kinds of document displays are possible, but the routines to
create them must be provided by the application program. For
information about adding display routines, see the command
"SetUserHook".

Il - 60 MOUSETEXT TOOLKIT

SECTION F -- WINDOW COMMANDS

Figure F-2. Location Parameters in a Document

Document Width

4

Document
Pointer

Document Y

Document X

r

Start Y

Start X l
»ABCDE...

Window Content Area

MOQUSETEXT TOOLKIT

Il-61

SECTION F -- WINDOW COMMANDS

Refreshing Windows

Whenever a window is dragged, the Toolkit must redisplay the content
areas of the windows. The application program can override the
Toolkkit's document display feature by having a routine that is called by
the Toolkit whenever the window is to be redisplayed. The program
passes the address of this assembly language routine to the Toolkit as
part of the Window Information Data Structure. Because of the way the
Toolkit saves zero-page locations, the program's routine cannot rely on
the contents of those locations. Furthermore, the routine can only call
the Toolkit's window update commands to update the content region.
These commands are WinChar, WinString, WinBlock, and WinOp.
(Note: WinBlock uses a Document Information Data Structure.)

In the case where the window should not be refreshed automatically,
the Toolkit uses a type of event called an update event to signal the
application that the window needs to be refreshed. The application
specifies that a window is of this type by making the two-byte Dinfo
pointer (in the Window Data Structure) equal to zero. Please see the
OpenWindow and GetEvent command descriptions for more
information.

Il- 62 MOUSETEXT TOOLKIT

G. Control Region
Commands

Overview

These commands deal with the control regions in the front window --
the horizontal and vertical scroll bars and the Thumbs.

Control Region Command List

No, Name Description

39 FindControl Returns whether the mouse isin a
control region.

40 SetCtiMax Sets the range of a scroll bar.

M TrackThumb Tracks the Thumb until the mouse
button is released.

42 UpdateThumb Displays the Thumb in given position.

43 ActivateCtl Changes the state of a scroll bar
(active or inactive)

Scroll Bars

Scroll bars are the only window control regions supported by the
Toolkit. The scroll bars are displayed in the content region of the front
(active) window. The horizontal and vertical scroll bars may be present
individually, or both may be present.

MOUSETEXT TOOLKIT 1i -63

SECTION G -- CONTROL REGION COMMANDS

An active scroll bar has several components, as shown in Figure G-1

o scroll arrows at both ends of the scroll bar

0 an open box called the Thumb

o gray regions between the arrows called:
Page-Up and Page-Down Regions in a vertical
scroll bar
Page-Left and Page-Right Regions in a
horizontal scroll bar.

An application program should provide for three different ways of
scrolling the window contents using the scroli bars.

1. Pressing the mouse button with the cursor on top of a scroll
arrow. This will continuously scroll the document as long as the
button is held down. During scrolling, the thumb moves to
indicate the relative position of the window in the document.

2. Positioning the cursor on the Thumb, pressing the mouse
button, and dragging the Thumb. This will scroll the document
at an accelerated rate.

3. Pressing the mouse button with the cursor in a Page-Up or
Page-Down Region. This will scroll the document up or down a
full page (or window) at a time.

The Thumb should appear in the full up or full down position only when
the first or last character of the document appears in the window. This
ensures that the user can always page up or down, and that the Thumb
can be used to get the first and last characters of a document.

If the full width or length of a document appears in the window, the
scroll bars should reflect this condition by appearing in the inactive state
on the display.

If the window is so narrow that less than three character cells are
available for the page regions and the Thumb, the Toolkit will not
display the Thumb. If fewer than than three cells are available for the
entire scroll bar, not even the arrows will be shown and the user will be
unable to scroll. Instead, the Toolkit will display a gray region if the scroll
bar is active, or a hollow region if it is inactive.

It - 64 MOUSETEXT TOOLKIT

SECTION G -- CONTROL REGION COMMANDS

Figure G-1. Window Control Regions.

/ Menu Bar ,
| ¢ Drag Bar

! [— Go Away Box
0 TITLE
OYe— Up Arrow
“Page Upll
Region
Thumb
Vertical Scroll Bar — “Page
Down”
Region
Horizontal Scroll Bar . .
Down
i Y4 Arrow
t t 1
“Page Left” “‘Page Right"’ Grow Box
Region Region
Left Thumb Right
Arrow Arrow

MOUSETEXT TOOLKIT 1l -65

SECTION G -- CONTROL REGION COMMANDS

This page left blank for your notes.

Il- 66 MOUSETEXT TOOLKIT

H. Technical Reference
Guide

Table H -1 lists all of the Toolkit commands by name and function.
Complete descriptions of the commands follow in alphabetical order.
For the commands as called in the different languages, please see
Section B which describes the appropriate language interface.

Table H-1. Alphabetical List of Toolkit Commands

Name
ActivateCtl.
Bload
CheckEvents
Checkltem
CloseAll

Close Window
Disableltem
DisableMenu
DragWindow
Exit
FindControl
FindWindow
FlushEvents
FrontWindow
GetEvent
GetMachiD
GetWinPtr
GrowWindow
HideCursor
HiLiteMenu
InitMenu

Init WindowMgr
KeyboardMouse
Load
MenuKey.
MenuSelect
ObscureCursor

Number
43

Type

Control Region Commands
Pascal Utility Procedure
Event-Handling Commands
Menu Commands

Window Commands
Window Commands

Menu Commands

Menu Commands

Window Commands

Pascal Utility Procedure
Contro! Region Commands
Window Commands
Event-Handling Commands
Window Commands
Event-Handling Commands
Pascal Utility Procedure
Window Commands
Window Commands

Cursor Commands

Menu Commands

Menu Commands

Window Commands
Startup Commands
Assembler Utility Procedure
Menu Commands

Menu Commands

Cursor Command

MOUSETEXT TOOLKIT I -67

SECTION H -- TECHNICAL REFERENCE

Table H-1. Alphabetical List of Toolkit Commands (cont.)

Name
OpenWindow
PasclntAdr
PeekEvent
PostEvent

ScreenWindow.

SelectWindow
SetCtiMax
SetCursor.
SetKeyEvent
SetMark
SetMenu.
SetUserHook
ShowCursor
StartDeskTop
StopDeskTop
Tokniz
TrackGoAway
TrackThumb
UpDateThumb
Version
WinBlock
WinChar
WinOp

WindowScreen.

WinString
WinText.

Tvpe

Window Commands
Startup Commands
Event-Handling Commands
Event-Handling Commands
Window Commands
Window Commands
Control Region Command
Cursor Commands
Event-Handling Commands
Menu Commands

Menu Commands

Startup Commands

Cursor Commands

Startup Commands

Startup Commands
Assembler Utility Procedure
Window Commands
Control Region Commands
Control Region Commands
Startup Commands
Window Commands
Window Commands
Window Commands
Window Commands
Window Commands
Window Commands

II- 68 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

ActivateCtl

Function: The ActivateCtl command changes the state of a scroll bar.
Command Number: 43 ($2B)

Parameter List: 2 (input, byte) number of parameters

ctl (input, byte) control region to change
0 = content region
1 = vertical scroll bar
2 = horizontal scroll bar
3 =dead zone

state (input, byte) to make control region:
0 =inactive
1 = active

Description: The ActivateCtl command changes the state of a scroll
bar and updates the Control Option Byte in the Winfo Data Structure.
An active scroll bar shows the Thumb and page regions. An inactive bar
shows a hollow page region.

The ActivateCtl command operates only on the front window.
Machine Language Commands:

ActivateCtl equ 43 ; command number
actl.parms db 2 ; parameter list for ActivateCtl
actl.ctl db 0 ; cil region to change
actlinact db 0 ; inactivate code

Pascal Interface:

Procedure ActivateCtl (whichctl: ctlarea; makeactive: boolean),
whichctl is the control region;
CtlArea = (NotCtl, VerScroll, HorScroll, DeadZone);
makeactive is the control region state:
False = inactive
True = active

Error Codes: 16 ($10) There are no windows
18 ($12) Bad control ID (not 1 or 2)

MOUSETEXT TOOLKIT 1l -69

SECTION H -- TECHNICAL REFERENCE

BLOAD

Function: BLoad loads a specified "bin file.
Command Number: none

Description: The utility procedure BLoad is used to load the
MouseText Runtime Module. This utility is only used with Pascal.

Pascal Interface:
Procedure BLoad (name: string):
name is the name of the "bin" file to be loaded which is
normally 'MTXKIT.ABS.

Error Codes: ProDOS error codes (See Kyan Pascal User Manual)

Il-70 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

CheckEvents

Function: CheckEvents reads the mouse, moves the cursor to the
new mouse position, and posts an event, if any.

Command Number: 5 ($05)
Parameter List: 0 (input, byte) number of parameters

Description: The CheckEvents command reads the mouse and
posts a mouse event if the button state has changed. The
CheckEvents command posts a keypress event and clears the
keyboard strobe, if a key on the keyboard is pressed and keypress
events are to be checked. (Note: If a previous call to the SetKeyEvent
command has disabled keypress events, the CheckEvents command
ignores the keypress.) The CheckEvents command also updates the
cursor position to the X and Y values of the mouse.

If the program is using Interrupt Mode, the interrupt handler calls the
CheckEvent command 60 times per second, synchronized with the
display vertical blanking (VBL). The Toolkit returns an error, if the
program calls the CheckEvents command in Interrupt Mode.

In Passive Mode, the GetEvent command calls the CheckEvents
command internally. The program should call CheckEvents or
GetEvent often to ensure smooth cursor motion.

Remember; The CheckEvents command is the only command that
reads the mouse and updates the cursor position. If itis never called,
the cursor will never move.

An application program can have an interrupt-service routine of its own
which augments or even replaces the functions of the CheckEvents
command. The CheckEvents command can pass control to the routine
either before or after event checking. The program can even have two
interrupt routines, one called before event checking and one after.
See the SetUserHook command in the "Startup Commands” for an
explanation of how this is done.

MOUSETEXT TOOLKIT ii-71

SECTION H -- TECHNICAL REFERENCE

CheckEvents (cont.)

If the event queue fills up, the Toolkit will ignore new evenis until there
is room for them in the queue. To empty the queue, call the
FlushEvents command.

Machine Language Commands:

CheckEvents equ 5 ; command number
chke.parms db 0 ; parameter list for CheckEvents

Pascal Interface: Procedure CheckEvents;
Error Codes:

7 ($07) Interrupt Mode in use. (Program specified Interrupt
Mode in StartDeskTop, so it can't call CheckEvents.)

Il-72 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

Checkltem

Function: Checkltem turns the checkmark displayed next to an item
on or off.

Command Number: 16 ($10)

Parameter List: 3 (input, byte) number of parameters
id (input, byte) menu ID
in (input, byte) item number

ck (input, byte) checkmark:
0 = turn checkmark off
1 = turn checkmark on

Description: The Checklitem command turns the checkmark
displayed next to an item, on or off. The checkmark appears in the
blank column on the left edge of the menu. Calling the Checkltem
command with the item number set to 0, generates error 9 (ltem
Number Not Valid).

Your program can call the SetMark command to change the checkmark
to any ASCII character.

Machine Language Commands:

Checkltem equ 16 ; command number
chki.parms db 3 ; parameter list for Checkltem
chki.id db 0 ; menu ID

chki.item db 0 ; item number

chki.chk db 0 ; checkmark on/off

Pascal Interface: Procedure Checkltem (menu_id, item_num:
integer; check : boolean);
menu_id is the menu ID number.
item_num is the item number
check is the ck (check) parameter:
false= turn checkmark off
true= turn checkmark on

Error Codes: 8 ($08) Menu ID was not found
9 ($09) Item Number not valid

MOUSETEXT TOOLKIT Il -73

SECTION H -- TECHNICAL REFERENCE

CloseAll

Function: The CloseAll command closes all open windows and
redisplays the screen.

Command Number: 25 ($19)
Parameter List: 0 (input, byte) number of parameters

Description: The CloseAll command removes all windows from the
open window list and redisplays the screen.

Machine Language Commands:

CloseAll equ 25 ; command number
cla.pamms db 0 ; parameter list for CloseAll

Pascal Interface: Procedure CloseAll;

Error Codes: (none)

Il-74 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

CloseWindow

Function: The CloseWindow command removes the window with a
given ID number and redisplays the screen.

Command Number: 24 ($18)

Parameter List: 1 (input, byte) number of parameters
id (input, byte) 1D number of window to close

Description: The CloseWindow command removes the window with
a given ID number from the list of open windows, and redisplays the
screen with the window removed. Setting the ID = 0 selects the top
window as the window to be closed.

Machine Language Commands:

CloseWindow equ 24 ; command number
cw.parms e o] 1 ; parameter list for CloseWindow
cw.id o 4] 0 ; 1D number of window to close

Pascal Interface: Procedure CloseWindow (window_id: integer);
window_id is the window ID number.

Error Codes: 15 ($0F) Window ID not found
17 ($11) Error returned by user hook

MOUSETEXT TOOLKIT 1-75

SECTION H -- TECHNICAL REFERENCE

Disableltem

Function: The Disableltem command disables or enables selection
and highlighting of menu items.

Command Number: 15 ($0F)

Parameter List: 3 (input, byte) number of parameters
id (input, byte) menu ID
in (input, byte) item number

dis (input, byte) disable:
1 = disable item
0 = enable item

Description: The Disableltem command disables or enables
selection and highlighting of a menu item. If an item is disabled, it
cannot be selected by either the MenuSelect command or the
MenuKey command. It will not be highlighted when the mouse moves
foit.

To enable an item, call the Disableltem command with the disable
parameter set to 0.

By setting the Disable Flag in the Menu Item Block's ltem Option Byte
when setting up the menu data structure, your program can make the
menu item start out disabled. Afterwards, the program should use the
Disableltem command to disable and enable menu items.

Calling Disableltem with item number set to zero generates error 9, ltem
Number Not Valid.

Machine Language Commands:

Disableltem equ 15 ; command number
ditm.parms db 3 ; parameter list for Disableltem
ditm.id db 0 ; menu ID

ditm.item db 0 ; item number

ditm.dis db 0 ; disable code

Il- 76 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

Disableltem (cont.)

Pascal Interface: Procedure Disableltem (menu_id, item_num :
integer;disable : boolean);
menu_id is the menu ID number.
item_num is the item number.
disable is the disable parameter:
false= enable
true= disable

Error Codes: 8 ($08) Menu ID was not found
9 ($09) Item Number not valid

MOUSETEXT TOOLKIT 1I-77

SECTION H -- TECHNICAL REFERENCE

DisableMenu

Function: The DisableMenu command disables or enables selection
and highlighting over a whole menu.

Command Number: 14 ($0E)

Parameter List: 2 (input, byte) number of parameters
id (input, byte) menu ID
dis (input, byte) disable:
1 = disable
0 = enable

Description: The DisableMenu command disables or enables
selections and highlights over a whole menu. None of the menu items
can be selected, if the menu has been disabled. The MenuSelect
command and the MenuKey command cannot "undo” the disabling.
The menu will still appear when the user moves the mouse to the menu
title, but neither the the title nor the menu items will be highlighted.

When a call to DisableMenu enables a menu, any items that were
individually disabled will remain disabled. (See the Disableltem
command.)

By setting the Disable Flag in the Menu Block's Option Byte when you
set-up the Menu Bar data structure, your program can make the menu
start out disabled. Afterwards, the program should use the
DisableMenu command to disable and enable menus.

Machine Language Commands:

DisableMenu equ 14 ; command number
dism.parms db 2 ; parameter list for DisableMenu
dism.id db 0 ; menu ID

dism.dis db 0 ; disable menu

II-78 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

DisableMenu (cont.)

Pascal Interface: Procedure DisableMenu (menu_id : integer;
disable : boolean);
menu_id is the menu ID number.
disable is the disable parameter:
false= enable
true= disable

Error Codes: 8 ($08) Menu ID was not found

MOUSETEXT TOOLKIT 1I-79

SECTION H -- TECHNICAL REFERENCE

DragWindow

Function: The DragWindow command displays the outline of the
window being dragged, then redisplays it in its new position.

Command Number: 30 ($1E)

Parameter List: 3 (input, byte) number of parameters
id (input, byte) 1D number of window being
dragged

mx (input, byte) X mouse coordinate of
starting position

my (input, byte) Y mouse coordinate of
starting position

Description: The DragWindow command displays the outline of the
window being dragged until the user releases the mouse button. It
then clears the display area previously occupied by the window and
redisplays the windows from back to front.

The application program should call the DragWindow command when it
detects the mouse button is down in the window's drag region. In
addition to the ID number of the window, the DragWindow command
also needs the mouse coordinates returned in the px and py position
by the FindWindow command. This differs from the TrackGoAway and
GrowWindow commands; while the Go-Away Box and the Grow Box
consist of only one character each, the drag bar consists of several
characters. The mouse could be in any of them when the user starts
dragging the window.

Setting ID = 0 selects the front window.

An application can also use the DragWindow command in keyboard
mouse emulation mode by calling it immediately after calling the
KeyboardMouse command. In this mode, the Toolkit tracks the cursor
and moves the window outline while the user presses the cursor keys.
The user indicates the completion of the move by pressing the
RETURN key or by pressing and releasing the mouse button. Pressing
the ESC key terminates the command and redisplays the window in its
original position.

II- 80 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

DragWindow (cont.)

Machine Language Commands:

DragWindow equ 30 ; command number
dg.parms db 3 ; parameter list for DragWindow
dg.id db 0 ; window ID number
dg.x db 0 ; X mouse coord of cursor start
dgy db 0 ; Y mouse coord of cursor start

Pascal Interface: Procedure DragWindow (window_id, mousex,
mousey: integer);
window_id is the window ID number.
mousex is the mouse X coordinate.
mousey is the mouse Y coordinate.

Error Codes: 15 ($0F) Window ID not found
17 ($11) Error returned by user hook
22 ($16) Operation cannot be performed

MOQUSETEXT TOOLKIT i - 81

SECTION H -- TECHNICAL REFERENCE

Exit

Function: This Assembly language utility is used to return the
application program to Kyan's KiX environment.

Command Number: none

Parameter List: none

Description: EXIT is used in assembly language programs only. It
returns control from the application program to the KiX environment at
the end of program execution. As an alternative, the programmer can
use the ProDOS QUIT routine to return to the ProDOS prompt.
Machine Language Commands: none

Pascal Interface: none

Error Codes: none

Il-82 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

FindControl

Function: The FindControl command indicates in which window
control region a given point is in.

Command Number: 39 ($27)

Parameter List: 4 (input, byte) number of parameters
wx (input, word) X window coord. of point
wy (input, word) Y window coord. of point
ctl (output, byte) control region point is in:
0 = content region
1 = vertical scroll bar
2 = horizontal scroll bar
3 = none of the above (dead zone)
part (output, byte) part of region point is in:
1 = Up-Arrow of vertical scroll bar,
Left-Arrow of horizontal scroll bar
2 = Down-Arrow of vertical scroll bar,
Right-Arrow of horizontal scroll bar
3 =Page-up region of vert. scroll bar,
Page-left region of horiz. scroll bar
4 =Page-down region vert. scroll bar,
Page-right region of horiz. scroll bar
5 = Thumb of scroll bar

Description: The FindControl command indicates in which window
control region a given point is in. The application program should call
the FindControl command when it dtermines, by means of a call to the
front window, that the mouse is in the content region of the front
window. Depending on the control and part codes returned by the
FindControl command, the application should take appropriate action.
If the mouse is in a page-up or page-down region, or in an Up-Arrow or
Down-Arrow, the application scrolls the contents of the window, then
calls UpDateThumb to make the Thumb reflect the new position in the
file.

The application program must make sure that the wx and wy values are
converted to window coordinates before calling the FindControl
command.

MOUSETEXT TOOLKIT 11-83

SECTION H -- TECHNICAL REFERENCE

FindControl (cont.)

Note: This command is different from the FindWindow command,
which takes mouse coordinates.

Machine Language Commands:

FindControl equ 39 command number

findc.parms db 4 ; parameter list for FindControl
findc.wx dw 0 ; X window coordinate of point
findc.wy dw 0 ; 'Y window coordinate of point
findc.ctl db 0 ; control region pointis in
findc.part db 0 ; part of region point is in

Pascal Interface:

Procedure FindControl (windowx, windowy: integer; var whichctl:
ctlarea; var whichpart: ctlpart);
windowx is the window X coordinate.
windowy is the window Y coordinate.
whichctl is the control region the point is in.
ctlarea = (NotCtl, VerScroll, HorScroll, DeadZone);
whichpart is the part of the control region the point is in.
ctipart = (Ctlinactive, ScrollUpLeft, ScroliIDownRight,
PageUpLeft, PageDownRight, Thumb);

Error Codes: 16 ($10) There are no windows

Il - 84 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

FindWindow

Function: The FindWindow command returns the ID number of the
window which contains the given point.

Command Number: 26 ($1A)

Parameter List: 4 (input, byte) number of parameters
px (input, byte) X mouse-coord. of point
py (input, byte) Y mouse-coord. of point
type (output, byte) type of area pointis in:
0 = Desktop
1 = Menu Bar
2 = content region
3 = drag region
4 = Grow Box
5 = Close Box
id (output, byte) 1D number of window point
is in (0 if point in desktop or menu bar).

Description: The FindWindow command returns the ID number of
the window which contains the given point and returns the region type
that the point is in: Menu Bar, content region, drag region, Grow Box,
or Close Box. The point is specified in mouse coordinates. If the point
is not in a window, the FindWindow command returns an ID number of
0 and a region type of desktop.

If the point is in the content region, the application program should call
the FindControl command with window coordinates of the point to
determine whether the point is in a scroll bar.

MOUSETEXT TOOLKIT H -85

SECTION H -- TECHNICAL REFERENCE

FindWindow (cont.)

Machine Language Commands:

FindWindow equ 26 ; command number

fdw.parms db 4 ; parameter list for FindWindow
fdw.x db 0 ; X coordinate of mouse

fdw.y db 0 ;'Y coordinate of mouse

fdw.type db 0 ; type of region mouse is in
fdw.window db 0 ; window 1D number (0 = desktop)

Pascal Interface:

Procedure FindWIndow (pointx, pointy: integer; var area: Type_area;

var window_id: integer);

pointx is the X coordinate of the point.

pointy is the Y coordinate of the point.

area is the region type of the point

type_area = (InDeskTop, InMenuBar, InContent,

InDrag, InGrow, InGoAway).

window_id is the window ID number.

Error Codes: (none)

II-86 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

FlushEvents

Function: The FlushEvents command empties the event queue.
Command Number: 7 ($07)

Parameter List: 0 (input, byte) number of parameters
Description: The FlushEvents command empties the event queue.

Machine Language Commands:

FlushEvents equ 7 ; command number
flshe.parms db 0 ; parameter list for FlushEvents
Pascal Interface: Procedure FlushEvents;

Error Codes: (none)

MOUSETEXT TOOLKIT It -87

SECTION H -- TECHNICAL REFERENCE

FrontWindow

Function: The FrontWindow command returns the ID number of the
front window.

Command Number: 27 ($1B)

Parameter List: 4 (input, byte) number of parameters
id (output, byte) ID number of front window

Description: The FrontWindow command returns the ID number of
the front, or active window. It returns an ID=0 if windows are not open.

Machine Language Commands:

FrontWindow equ 27 ; command number
friw.parms db 1 ; parameter list for FrontWindow
friw.id db 0 ; 1D number of front window

Pascal Interface:

Procedure FrontWindow (var window_id: integer);
window_id is the window ID number.

Error Codes: (none)

Il - 88 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

GetEvent

Function: The GetEvent command fetches the next event from the
event queue. If there is none, the GetEvent command returns the
mouse position. In Passive Mode, the GetEvent command calls the
CheckEvents command.

Command Number: 6 ($06)

Parameter List: 3 (input, byte) number of parameters
et (output, byte) event type:
0 = no event
1 = button down
2 = button up

3 = key pressed
4 = drag event
5 = Apple key down
6 = update event

ebl (output, byte) event byte 1: X coord. or
key value

eb2 (output, byte) event byte 2: Y coord. or
key modifier

Description: The GetEvent command fetches the next event from
the event queue so the program can respond to a key press or the
mouse button. In Passive Mode, the GetEvent command calls the
CheckEvent command internally to make sure the latest event gets
processed.

The event-type variable is a byte which indicates what caused the event
to occur. The event bytes are the X and Y mouse positions from the last
call to the CheckEvents command, if the event type is 0, 1, 2, 4, or 5.
The event bytes are the key and the key modifier, if the event type is 3.
The high bit of the key value is 0. The key modifier values are:

0 = no modifier

1 = OPEN-APPLE pressed
2 = SOLID-APPLE pressed
3 = both Apple keys pressed

MOUSETEXT TOOLKIT I -89

SECTION H - TECHNICAL REFERENCE

GetEvent (cont.)

The drag event (et parameter = 4) is similar to a no event, except that
the mouse button is pressed. After getting a button-down event, the
program should get drag events or a button-up event. If the program
gets a no event while waiting for a button-up event, this indicates a
mouse-up event was missed, and that you don't know what the mouse
position was at that time (you only know its present position). If this
happens, the program must cancel any operation that is in progress.

The Apple-key down event indicates that one of the Apple keys was
down when the mouse button was pressed.

An event type 6 indicates an update event. This means that a window
which cannot be automatically refreshed needs updating. The window
ID is returned in ebl, the key value parameter. This event occurs only
when the application has set the Dinfo pointer in the Window Data
Structure to zero, indicating that the window cannot be automatically
refreshed.

Machine Language Commands:

command number
parameter list for GetEvent

GetEvent equ 6
evt.parms db 3

evt.type do 0 ; the event type

evt.ebl db 0 ; event byte 1 (x or key)
evt.eb2 db 0 ; event byte 2 (y or modifier)
evt.x equ evt.ebl ; xpos of mouse

evty equ evteb2 ; yposof mouse

evt.key equ evt.ebl ; keyinput by user

evt.keymod equ evt.eb2 modifier to key input by user

II-90 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

GetEvent (cont.)

Pascal Interface:

Procedure GetEvent (var event : type_event);
event is returned with:
evt_kind set to the event type.
charl set to event byte 1: X coordinate or key value.
char2 set to event byte 2: Y coordinate or key modifier.

Type_event = Record

Evtkind: byte;
Char1: byte;
Char2: byte;
reserve: byte;
end;
Eventkind
0 = No event 1 = button down
2 = Button up 3 = key pressed
4 = drag event 5 = Apple Key down

6 = Update event

Error Codes: (none)

MOQUSETEXT TOOLKIT I -91

SECTION H -- TECHNICAL REFERENCE

GetMachlD

Function: The GetMachID procedure gets the machine ID byte and
subsidiary 1D byte.

Command Number: none
Parameter List: none
Description: The utility procedure GetMachlD reads the machine ID
byte at $FBB3 and the subsidiary ID byte at $FBCO. It returns the
values in the calling parameters. The ID byte is $06 for Apple lle and
Apple llc. The subsidiary ID byte is:

$EA = Apple lle

$E0 = Apple lle with enhanced ROM

$00 = Apple llc.
This procedure is only used with Pascal.
Machine Language Commands: Not applicable
Pascal Interface:
Procedure GetMachID (Var machid, machsid: integer);

Get MachiD is returned with:
machid is the ID byte.
machsid is the subsidiary ID byte

Error Codes: none

I1-92 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

GetWinPtr

Function: TheGetWinPtr command returns the pointer to the Winfo
structure of the open window that has a specified ID number.

Command Number: 45 ($2D)

Parameter List: 2 (input, byte) number of parameters
id (input, byte) ID number of window
ptr (output, word) pointer to Winfo Data

Structure

Description: The GetWinPtr command returns the pointer to the
Window Information Data Structure (Winfo) of the open window which
has the specified ID number. Setting ID = 0 selects the top window.

Machine Language Commands:

GetWinPtr equ 45 ; command number
gwip.parms db 2 ; parameter list for GetWinPtr
gwip.id db 0 ; window ID number
gwip.winfo dw 0 ; pointer to Winfo Data Structure

Pascal Interface: Procedure GetWinPtr (window_id: integer; var
MyWintoPtr: winfo_ptr);
window_id is the ID number of the window.
winfo_ptr is a pointer to Winfo data structure.
Winfo_Ptr = AWinfo;

Error Codes: 15 ($0F) Window ID not found

MOUSETEXT TOOLKIT #-93

SECTION H -- TECHNICAL REFERENCE

GrowWindow

Function: The GrowWindow command displays the outline of the
window being grown, then redisplays an empty window with the new
size.

Command Number: 31 ($1F)

Parameter List: 1 (input, byte) number of parameters
stat (output, byte) return status:
0 = window did not change size
1 = window did change size

Description: The Grow Window command displays the outline of the
window being grown until the user releases the mouse button. The
GrowWindow command then clears the display area previously
occupied by the window and redisplays the window from the back to
front.

The application program should call the GrowWindow command when it
detects that the mouse button is down in the Grow Box of the front
window.

The GrowWindow command leaves the content area of the front
window blank because it can't determine whether the bottom of the
document has been passed or whether the content area should be
shifted. If the return status indicates that the GrowWindow command
changed the size of the window, the application must redisplay the
content area and update the scroll bars.

An application can also use the GrowWindow command in keyboard
mouse emulation mode by calling it immediately after calling the
KeyboardMouse command. In this mode, the Toolkit tracks the cursor
and draws the window outline in different sizes while the user presses
cursor keys. The user indicates the completion of the resizing by
pressing the RETURN key or by pressing and releasing the mouse
button. Pressing the ESC key terminates the command and redisplays
the window in its original size.

II-94 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

GrowWindow (cont.)

Machine Language Commands:

GrowWindow equ
grow.parms db
grow.resul db

Pascal Interface:

Error Codes:

31 : command number
1 ; parameter list for GrowWindow
0 ; return status

Procedure GrowWindow (var makeitgrow:
boolean);

makeitgrow is the return status:
false = window did not grow
true = window did grow

16 ($10) There are no windows
17 ($11) Error returned by user hook
22 ($16) Operation cannot be performed

MOUSETEXT TOOLKIT Il -95

SECTION H -- TECHNICAL REFERENCE

HideCursor

Function: HideCursor makes the cursor invisible.

Command Number: 4 ($04)
Parameter List: 0 (input, byte) the number of parameters

Description: The HideCursor command makes the cursor invisible.
ShowCursor has no effect if the cursor is temporarily invisible.

Machine Language Commands:

HideCursor equ 4 ; command number
hidecparms db 0 ; parameter list for HideCursor
Pascal Interface: Procedure HideCursor;

Error Codes: (none)

IM-96 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

HiLiteMenu

Function: The HiLiteMenu command turns menu title highlighting on
and off.

Command Number: 13 ($0D)

Parameter List: 1 (input, byie) number of parameters
id (input, byte) menu ID: 0 = turn highlight off

Description: The HiLiteMenu command highlights specified menu
titles in the Menu Bar. To turn off highlighting after a call to the
MenuSelect command or MenuKey command, call the HiliteMenu
command with id = 0.

Machine Language Commands:

HiLiteMenu equ 13 ; command number
hili.parms db 1 ; parameter list for HiLiteMenu
hili.mid db 0 ; menu ID (0 for all)

Pascal Interface: Procedure HiLiteMenu (menu_id : integer);
menu_id is the menu number.

Error Codes: 8 ($08) Menu ID was not found.

MOUSETEXT TOOLKIT 11-97

SECTION H -- TECHNICAL REFERENCE

InitMenu

Function: The InitMenu command establishes an area of memory
which is used to save the part of the display obscured by menus.

Command Number: 9 ($09)

Parameter List: 2 (input, byte) numbers of parameters
sa (input, word) save area: pointer to
reserved memory area
sas (input, word) save area size: number of
bytes reserved

Description: During calls to the MenuSelect command, the part of
the display obscured by a menu must be saved so that it can be
replaced when the menu goes away. The application program must
provide memory space and reserve it for the Toolkit.

You can determine the amount of memory space to reserve for menu
displays by calculating the screen area of the largest menu in the
program. The largest menu could have a large screen area, or it could
have only a few items, each of which is very long.

You calculate the screen area of a menu by taking the product of the
number of items in the menu, plus 1, and multiplying it by five bytes
more than the length of the longest item string in that menu. If you are
using keys to select items, each item string must include three bytes for
displaying a space, an Apple icon, and the key which selects the item.

When the program calls the SetMenu command to initialize a menu bar,
the SetMenu command checks whether the amount of memory
reserved by the InitMenu command is sufficient for a particular menu
and returns an error if it is not.

II-98 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

InitMenu (cont.)

Machine Language Commands:

initMenu equ 9 ; command number

im.parms db 2 ; parameter list for InitMenu

im.sarea dw savearea ; area used for saving screen under
menu

im.ssize dw savesize ; size of save area

Pascal Interface:

Procedure InitMenu (save: savebuffer; buf_size: integer);
savebuffer is a pointer to the save area.
buf_size is the save area size.

Error Codes: (none)

MOUSETEXT TOOLKIT 1l -99

SECTION H -- TECHNICAL REFERENCE

InitWindowMgr

Function: The InitWindowMgr command initializes the internal list of
open windows and establishes an area of memory. This area of memory
is used to save parts of the display while a window is being dragged or
grown.

Command Number: 22 ($16)

Parameter List: 2 (input, byte number of parameters
ptr (input, word) pointer to reserved
memory area
size (input, word) size of reserved

memory area in bytes

Description: The InitWindowMgr command resets the pointers to
the first and last entries in the internal linked list of open windows. It
alsoestablishes an area of memory which is used to save parts of the
display while a window is being dragged or grown.

During calls to the DragWindow and GrowWindow commands, the
Toolkit must save the part of the display obscured by the window
outline so that the display can be replaced when the window operation
is finished. The application program must provide the necessary
memory and reserve it for use by the Toolkit.

The amount of memory space required is determined by the perimeter
of the largest window (the sum of twice the window's width plus twice its
length.

Note: This window memory can be the same area which is reserved by
the InitMenu command.

Il - 100 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

InitWindowMar (cont.)

Machine Language Commands:

InitWindowMgr equ 22 : command number

iwm.parms db 2 ; parameter list for InitWindowMgr

iwm.sarea dw savearea ; area to use when saving window
screen

iwm.ssize dw savesize ; size of save area

Pascal Interface:

Procedure InitWindowMgr (Var save: SaveButfer; buf_size : integer);
Save is the buffer.
SaveBuffer = Array[1..SaveSize] of byte;
buf_size is the buffer size.

Error Codes: (none)

MOUSETEXT TOOLKIT 11 -101

SECTION H - TECHNICAL REFERENCE

KeyboardMouse

Function: The KeyboardMouse command makes the next command
work in mouse emulation mode, assuming the next command is one of
the three that work in that mode.

Command: 48 ($30)
Parameter List: 0 (input, byte) the number of parameters

Description: The KeyboardMouse command is a procedure call; it
has no parameters.

The KeyboardMouse command is used in conjunction with the three
commands that operate in mouse emulation mode: MenuSelect,
DragWindow, and GrowWindow. Call the KeyboardMouse command
before calling one of these commands, to make them operate in mouse
emulation mode.

An application can also require this form of mouse emulation on the
MenuKey command by calling the command with the ESC key as the
keystroke. This has the same effect as calling the KeyboardMouse
command and then calling the MenuSelect command.

Machine Language Commands:

KeyboardMouse equ 48; command number

kdbms.parms db 0 ; parameter list for KeyboardMouse
Pascal Interface: Procedure KeyboardMouse

Error Codes: (none)

Il - 102 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

Load

Function: The Load routine loads a specific "bin" file.
Command Number: none

Parameter List: none

Description: The utility assembly language routine Load is. used to
load the MouseText Runtime Module. This routine is used with
assembly language programs only.

Machine Language Commands:

Put Isb of filename string in the x register

Put msb of filename string in the y register

jump to subroutine load

Pascal Interface: none

Error Codes: ProDOS error calls (see Kyan Pascal User Manual)

MOUSETEXT TOOLKIT 1l -103

SECTION H -- TECHNICAL REFERENCE

MenuKey

Function: The MenuKey command finds the menu item which
matches a key.

Command Number: 12 ($0C)

Parameter List: 4 (input, byte) number of parameters
id (output, byte) menu ID, 0 if no item selected
in{output, byte) item number, undefined if id=0
k (input, byte) key: the character typed
km (input, byte) key modifier, as returned by
GetEvent:
0 = no modifier,
1 = OPEN-APPLE key
2 = SOLID-APPLE key
3 = either Apple key

Description: After the user presses a key, the MenuKey command
searches the menu data to find a menu item that has a matching key. If
it finds a match, it highlights the menu title and returns the menu ID
number and item number. This is also what the MenuSelect command
does. In addition, the MenuKey acts like the MenuSelect command
and leaves the selected menu highlighted. The program must call the
HiliteMenu command to turn off the highlighting.

If you set the key modifier parameter to 3, either Apple key will serve to
modify a matching keypress,

If an itemis disabled, its menu key or keys will not select it.

As a special case, the MenuKey command can operate like the
MenuSelect command in keyboard mouse emulation mode. Calling the
MenuKey command with ESC as the key, initiates this mode of
operation. The Toolkit tracks the cursor while the user presses the
cursor keys. Selections are made by pressing the RETURN key or
pressing and releasing the mouse button. The user can also press an
appropriate command key. Pressing the ESC terminates the
command.

I - 104 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

MenuKey (cont.)

Machine Language Commands:

MenuKey equ 12 ; command number
mkey.parms db 4 ; parameter list for MenuKey
mkey.mid d 0 ; menu ID returned
mkey.item d 0 : item number returned
mkey.key b0 ; key user typed

mkey.mod d 0 ; modifier of key

Pascal Interface:

Procedure MenuKey (var menu_id, menu_choice : integer; var
key_event : type_event);
menu_id is the menu ID number.
menu_choice is the item number.
key_event is returned with:
char1 as the key value
char2 as the key modifier
Type_event = Record
EvtKind: byte;
Char1 : byte;
Char2 : byte;
Reserve: byte;
end;

Error Codes: (none)

MOUSETEXT TOOLKIT Il -105

SECTION H -- TECHNICAL REFERENCE

MenuSelect

Function: The MenuSelect command interacts with the mouse to
display a menu and return the selection, if any.

Command Number: 11 ($0B)

Parameter List: 2 (input, byte) number of parameters
id (output, byte) menu ID, 0 = no menu item
chosen
in (output, byte) menu item number,
undefined if id = 0

Description: The MenuSelect command performs the interactive
display of menus which occurs while the user keeps the mouse button
depressed. MenuSelect does not return until the user releases the
button and a button-up event occurs.

The application program calls the MenuSelect command whenever the
user presses the mouse button on line 0 of the display. As the user
moves the mouse up and down the menu display, the MenuSelect
command tracks the mouse and updates the cursor. When the cursor
moves to a menu item, the MenuSelect command highlights the item.

When the user releases the mouse button with the cursor on a menu
item, the MenuSelect command removes the menu from the display,
highlights the menu title, and returns the menu ID number and the item
number. When the program finishes performing the selected
operation, it must call the HiLiteMenu command to turn off the
highlighted portion of the menu title.

An application can also use the MenuSelect command in keyboard
mouse emulation mode. By calling itimmediately after calling the
KeyboardMouse command, the Toolkit tracks the cursor while the user
presses cursor keys to move the cursor. The user selects a menu item
by pressing the RETURN key or by pressing and releasing the mouse
button. The user can also press an appropriate command key.
Pressing the ESC key terminates the command.

it-106 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

MenuSelect (cont.)

Machine Language Commands:

MenuSelect equ 11 ; command number

ms.parms b 2 ; parameter list for MenuSelect
ms.mid db 0 ; menu ID returned

ms.item do 0 ; item number returned

Pascal Interface:

Procedure MenuSelect (var menu_id, menu_choice : integer);
menu_id is the menu ID number.
menu_choice is the menu item number.

Error Codes: (none)

MOUSETEXT TOOLKIT ii-107

SECTION H -- TECHNICAL REFERENCE

ObscureCursor

Function: ObscureCursor makes the cursor temporarily invisible.
Command Number: 44 ($2C)

Parameter List: 0 (input, byte) the number of parameters
Description: The ObscureCursor command makes the cursor
invisible until the mouse moves, then it reappears. Use ObscureCursor
when text is being entered, and you do not want to obscure the view of
the text. As soon as you move the mouse to perform another task, the
cursor reappears.

Machine Language Commands:

ObscureCursor equ 44 ; command number
obsccparms db 0 ; parameter list for ObscureCursor

Pascal Interface: Procedure ObscureCursor;

Error Codes: (none)

It- 108 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

OpenWindow

Function: The OpenWindow command opens a window by
supplying a pointer to the window's Information Data Structure.

Command Number: 23 ($17)

Parameter List: 1 (input, byte) number of parameters
ptr (input, word) pointer to WINFO Data
Structure

Description: The OpenWindow command passes window
information to the Toolkit via a pointer to the Window Information Data
Structure, or the Winfo Data Structure (See Table H-1). The Winfo Data
Structure must reside in a fixed location in memory while the window is
open.

The Window information Data Structure includes a pointer to the
Document Information Data Structure (Dinfo Data Structure) which the
Toolkit uses to obtain display text for the window (See Table H-5). Each
call to the OpenWindow command makes that particular window the
front, or active window.

The OpenWindow command forces X and Y position coordinates into
valid values. The command also forces the Thumb positions to be no
larger than the maximum size. However, the OpenWindow command
does not check to insure that window minimums are smaller than
maximums or that the current window size is between the maximum and
minimum scale.

The application program can substitute its own routine for the
OpenWindow command. The program passes the address of its open
routine in the Winfo Data Structure to the pointer in the Dinfo Data
Structure and sets bit 7 of the Window Option Byte. The Toolkit will
pass control to the program’s routine whenever the contents of the
window need to be changed.

MOUSETEXT TOOLKIT i - 109

SECTION H -- TECHNICAL REFERENCE

OpenWindow (cont.)

Because the user routine is called from within the Toolkit, it cannot rely
on the zero-page locations the Toolkit uses. They are currently $00 to
$18. When the Toolkit calls the user routine, the register contains the
following values:

0 accumulator: window ID number
o Xregister: low byte of Winfo address
o Y register: high byte of Winfo address

The routine can only call Toolkit commands with names which start with
Win-. These commands will update the window content region it was

requested to update. _Any other calls can put the Toolkit into an
unknown state,

II-110 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

OpenWindow (cont.)

Table H-1. Information Structure for a Window

ParameterFunction Size Note
Window 1D Number (not 0) 1 byte

Window Option Byte 1 byte

Title Sting Pointer 2 bytes

Window Position X Coordinate 2 bytes 1,2
Window Position Y Coordinate 2 bytes 1,2
Curmrent Content Width 1 byte 1,3
Cunent Content Length 1 byte 1,3
Minimum Content Width 1 byte

Maximum Content Width 1 byte 4
Minimum Content Length 1 byte

Maximum Content Length 1 byte 4
Document information Structure Pointer 2 bytes 7
Horizontal Control Option Byte 1 byte

Vertical Control Option Byte 1 byte

Horizontal Scroll Maximum 1 byte

Current Horizontal Thumb Position 1 byte 1,5
Vertical Scroll Maximum 1 byte

Current Vertical Thumb Position 1 byte 1,5
Window Status Byte 1 byle 1
Reserved for Future Use 1 byte 6
Pointer to Next Winfo Structure 2 bytes 6
Reserved for Tookit 2 bytes 6
Screen Area Covered 4 bytes 6

1 Program sets initial values, Toolkit updates these.

2 Initial values determine initial position of window.

3 Initial values determine initial window size.

4 Document width & length determine max content width & length.
5 Initial values determine initial position of thumb.

6 Mems filled by Toolkit.

7 If the pointer is zero, the next GetEvent will signal & Update_Event

MOUSETEXT TOOLKIT

i-111

SECTION H -- TECHNICAL REFERENCE

OpenWindow (cont.)

Table H-2. Contents of Window Option Byte in
Window Information Structure

Bit No, Function Notes
Document Pointer Function 1
,5 Reserved for Future Use
3 Reserved for Toolkit 2
Grow Box is present 3
3
3

Close Box is present
Window is Dialog or Alert Box

O=MNhO~

1 This bit indicates the function of the Document Pointer.
0 = Pointer to Document Information Structure
1 = Pointer to User Window Routine

2 The program must set these bytes to 0.

3 These items set the initial appearance of the window. They cannot
be changed when the window is open. You must close the window,
change the values, then open the window again, if you want to
change them.

Table H-3. Contents of Horizontal or Vertical Control Option Byte in
Window information Structure

Bit No. Function Notes
7 Scrollbar is present 1

6 Thumb is present 1

5-1 Reserved for Future Use

0 Scrolibar is active 2

1 These items set the initial appearance of the window. They cannot
be changed when the window is open. You must close the window,
change the values, then open the window again, if you want to
change them.

2 Initial value set by program. Afterwards, use ActivateCtl to change it.

II-112 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

OpenWindow (cont.)

Table H-4. Contents of Window Status Byte in
Window Information Structure

BitNo. Function Note
7 Window is open 1

6-4 Reserved for Future Use
3-0 Used by Toolkit

1 Program can read to determine state of window.

Table H-5. Information Structure for a Document

Parameter Function Size Note
Document Pointer 2 bytes 1
Reserved (set to 0) 1 byte

Document Width 1 byte

Document X Coordinate 2 bytes 2
Document Y Coordinate 2 bytes 2
Reserved for Toolkit 4 bytes 3

1 See bit 7 of the Window Option Byte.
2 Set to 0 or set initial position in the document.
3 The program must set these bytes to 0.

Machine Language Commands:

OpenWindow equ 23 : command number
open.parm db 1 ; parameter list for OpenWindow
open.wind dw 0 ; pointer to Winfo Data Structure

MOUSETEXT TOOLKIT Il -113

SECTION H -- TECHNICAL REFERENCE

OpenWindow (cont.)

Pascal Interface:

Procedure OpenWindow (var my_Winfo:winfo);
my_Winfo is the Winfo data structure.
Winfo = Record

end;

Window!D: byte;
WinOpt: byte;
TitlePtr: ATitleStr;
WindowX: integer,;
WindowY': integer;
ContWidth: byte;
ContLength: byte;
MinContWidth: byte;
MaxContWidth: byte;
MinContLength: byte;
MaxContLength: byte;
DinfoPtr: ADinfo;
HorContOpt: byte;
VertContOpt: byte;
HThumbMax: byte;
HThumbPos: byte;
VThumbMax: byte;
VThumbPos: byte;
WinStatus: byte;
Reservel: byte;
NextWinfo: AWinfo;
Reserve2: byte;
Reserve3: byte;
Reserved: byte;
Reserve5: byte;
Reservet: byte;
Reserve7: byte;

Dinfo_ptr = *Dinfo;

I1-114 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

OpenWindow (cont.)

Dinfo = Record
DocPtr: integer;
Reservel: byte;
DocWidth: byte;
DocX: integer;
DocY: integer;
DocLength: integer;
Reserve2: integer;
Reserved: integer,

end;
Error Codes: 12 ($0C) A window with same ID is already open
13 ($0D) InitWindowMgr buffer too small for this
window
14 ($0E) Bad Winfo--tried to open with ID=0, or
conflicting max and min width or length
17 ($11) Error returned by user hook

MOUSETEXT TOOLKIT i - 115

SECTION H -- TECHNICAL REFERENCE

PascintAdr

Function: PascintAdr returns the address of the Toolkit's interrupt
handler.

Command Number: 17 ($11)
Parameter List:

1 (input, byte) the number of parameters
Adr (output, word) the address of the interrupt handler

Description: The PasclntAdr command returns the address of the
Toolkit's interrupt handler in the Adr parameter. Your Pascal program
can pass that address on to the Mouse Attach Driver (see Appendix Il)
when it calls SetMouse. The SetMouse call should always specify
Passive Mode along with the interrupt address. The program should do
this before calling StartDeskTop, which will enable interrupts if its Int
parameteris setto 1.

Note: This command is used only in Pascal programs.

Machine Language Commands:

PascintAdr equ 17 ; command number
pasc.parms db 1 ; parameter list for PascintAdr
pasc.addr dw 0 ; address of int handler

Pascal Interface: Procedure PascIntAdr (var IntAdr: integer);
IntAdr is address of interrupt routine

Error Codes: (none)

it- 116 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

PeekEvent

Function: The PeekEvent command reports on next event actions
without removing them from the queue.

Command Number: 21 ($15)

Parameter List:
3 (input, byte)
et (output, byte)

eb1 (output, byte)

eb2 (output, byte)

number of parameters
event type:

0 = no event

1 = button down

2 = button up

3 = key pressed

4 = drag event

5 = Apple key down

6 = update event
event byte 1: X coordinate or
key value
event byte 2: Y coordinate or
key modifier

Description: The PeekEvent command returns information from next
event actions in the event queue, but does not remove them from the
queue. The parameters are the same as for the GetEvent command,

described earlier.

Machine Language Commands:

PeekEvent equ 21
pke.parms do 3
pke.type db 0
pke.eb1 db 0
pke.eb2 db O

pke.x equ pke.eb1
pke.y equ pke.eb2
pke key equ pke.eb1
pkekeymod equ pke.eb2

: command number

; parameter list for PeekEvent
; the event type

; event byte 1 (x or key)

; event byte 2 (y or modifer)

; X pos of mouse

; Y pos of mouse

; key input by user

; modifier to key input by user

MOUSETEXT TOOLKIT 11-117

SECTION H -- TECHNICAL REFERENCE

PeekEvent (cont.)

Pascal Interface:

Procedure PeekEvent (var event : type_event);
event is returned with:
evt_kind set to the event type.
char1 set to event byte 1: X coordinate or key value.
char2 set to event byte 2: Y coordinate or key modifier.
Type_event = record
EvitKind: byte;
Char1: byte;
Char2: byte;
reserved: byte;
end;

Error Codes: (none)

It-118 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

PostEvent

Function: The PostEvent command posts an event into the event

queue.

Command Number: 46 ($2E)

Parameter List:

3 (input, byte)
et (input, byte)

eb1 (input, byte)
eb2 (input, byte)

number of parameters
event type:
0 = no event
1 = button down
2 = button up
3 = key pressed
4 = drag event
5 = Apple key down
6 = update event
event byte 1: X coordinate or
key value
event byte 2 Y coordinate or
key modifier

Description: The PostEvent command posts an event into the event
queue. The parameter list is the same for the GetEvent command
except that all of the parameters are inputs.

The PostEvent command can have an event type similar to the one
returned by the GetEvent command (et = 0, 1, ...5). It can also have a
type defined by the application program (et = 128, 129, ...255). Any
other value for the et parameter is illegal. The Toolkit ignores events

128-255.

Machine Language Commands:

PostEvent equ 46
post.parms db 3
post.type db 0
post.eb1 db 0
post.eb2 db 0

; command number

; parameter list for PostEvent
; the event letter

; event byte 1 (x or key)

; event byte 2 (y or modifier)

MOUSETEXT TOOLKIT Il - 119

SECTION H -- TECHNICAL REFERENCE

PostEvent (cont.)

post.x equ post.eb1l ; x pos of mouse
post.y equ post.eb2 ; ypos of mouse
post.key equ post.eb1 ; keyinput by user

post.keymod equ posteb2 ; modifier to key input by user

Pascal Interface:

Procedure PostEvent (var event : type_event);
event should be supplied with:
evt_kind set to the event type.
char1 set to event byte 1: X coordinate or key value.
char2 set to event byte 2: Y coordinate or key modifier.
Type_event = Record
Evtkind: byte;
Char1: byte;
Char2: byte;
Reserved: byte;
end;

Error Codes: 19 ($13) The event queue is full; event not posted.
20 ($14) liegal event type; event not posted.

il - 120 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

ScreenWindow

Function: The ScreenWindow command converts screen coordinate
values to window coordinates.

Command Number: 33 ($21)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) 1D number of window to use
sX (input, word) X coordinate for the screen

sy (input, word) Y coordinate for the screen

WX (output, word) X coordinate in the window

wy (output, word) Y coordinate in the window
Description: The ScreenToWindow command converts passed
coordinate values from screen coordinates to window coordinates.
Setting ID = 0 selects the front window.
Machine Language Commands:

ScreenWindow equ 33 command number

s2w.parms db 5 ; parameter list for ScreenWindow
s2w.id db 0 ; window ID number

52wW.5X dw 0 ; X screen coordinate

s2w.sy dw 0 ; Y screen coordinate

S2wW.WX dw 0 ; X coordinate in window

s2w.wy dw 0 ; 'Y coordinate in window

Pascal Interface

Procedure ScreenWindow (window_id, screenx, screeny: integer;
var windowx, windowy: integer);
window _id is the window ID number.
screenx is the screen X coordinate.
screeny is the screen Y coordinate.
windowx is the window X coordinate.
windowy is the window? coordinate.

Error Codes: 15 ($0F) Window ID not found

MOUSETEXT TOOLKIT 11 -121

SECTION H -- TECHNICAL REFERENCE

SelectWindow

Function: The SelectWindow command activates the window with a
given ID number.

Command: 28 ($1C)

Parameter List: 1 (input, byte) number of parameters
id (input, byte) ID number of window

Description: The SelectWindow command makes the window with
the given ID number the front, or active, window and redisplays the
screen. The window which was active becomes the second window in
the list. Setting ID = 0 selects the front window. If the window selected
is already the front window, the Toolkit does not redisplay the screen.

Machine Language Commands:

SelectWindow equ 28 ; command number
selw.parms db 1 ; parameter list for SelectWindow
selw.id do 0 ; 1D number of window

Pascal Interface

Procedure SelectWindow (window_id: integer);
window_id is the window ID number.

Error Codes: 15 ($0F) Window ID not found
17 ($11) Error returned by user hook

Il - 122 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

SetCtiMax

Function: The SetCtiIMax command changes the range of the scroll
bar of the front window.

Command Number: 40 ($28)
Parameter List:

2 (input, byte) number of parameters

ctl (input, byte) control region to update max value for:
1 = vertical scroll bar
2 = horizontal scroll bar

max (input, byte) new maximum value (must be >1)

Description: The SetCtiMax command changes the range of the
scroll bar of the front window. If the current Thumb position is greater
than the new maximum, the SetCtiMax command sets the Thumb to the
new maximum and calis the UpdateThumb command to display it in the
proper position. The SetCtiIMax command changes the control max
value and, if necessary the Thumb position in the Winfo Data Structure.

The program normally calls the SetCtiMax command whenever the size
of a window changes.

Maximum values depend on the application. A typical maximum value
for the horizontal scroll bar would be calculated as the document width,
minus the content width, plus twice the width of the vertical scroll bar or
grow box.

A typical maximum value for the vertical scroll bar would be calculated as
the document length, minus the content length, plus the height of the
horizontal scroll bar.

Machine Language Commands:

SetCtiMax equ 40 ; command number
setct.parms db 2 ; parameter list for SetCtiMax
setct.cll db 0 ; control region affected
setct.newmax db 0 ; new maximum value

MOUSETEXT TOOLKIT 11-123

SECTION H -- TECHNICAL REFERENCE

SetCtlIMax

Pascal Interface

Procedure SetCtiIMax { whichctl: ctlarea; newmax: integer);
whichctl is the control region.
CtlArea = (NotCtl, VerScroll, HorScroll, DeadZone).

newmax is the new maximum value.

Error Codes: 16 ($10) There are no windows
18 ($12) Bad control ID (not 1 or 2)

Il - 124 MOUSETEXT TOOLKIT

SECTION H - TECHNICAL REFERENCE

SetCursor

Function: SetCursor sets the character used for displaying the
cursor.

Command Number: 2 ($02)
Parameter List:

1 (input, byte) the number of parameters
cc (input, byte) character to use as cursor

Description: The SetCursor command sets the character displayed
as the cursor. Characters normally used as the cursor include the
following MouseText characters.

Arrowhead (ASCIl value 02 $02)
Hourglass (ASCIl value 03 $03)
Checkmark (ASCIl value 04 $04)
Text Cursor (ASCII value 20 $14)
Cell Cursor (ASCII value 29 $1D)

If the cursor is visible, it changes to the new character as soon as
SetCursor is called. Each time the cursor is moved, if it is visible, the
Toolkit saves the character at the new cursor position and replaces it
with the character specified by SetCursor.

Machine Language Commands:

SetCursor equ 2 ; command number
setc.parms db 1 ; parameter list for SetCursor
setc.char db $00 ; character to use for cursor

Pascal Interface:

Procedure SetCursor (new_ch : integer);
new_ch is the character to use as cursor.

Error Codes: (none)

MOUSETEXT TOOLKIT II-125

SECTION H -- TECHNICAL REFERENCE

SetKeyEvent

Function: The SetKeyEvent command specifies whether the Toolkit
treats keypresses as events.

Command Number: 8 ($08)
Parameter List:

1 (input, byte) Number of parameters

sk (input, byte) set keyevent:
0 = don't check keyboard,
1 = check the keyboard

Description: The SetKeyEvent command specifies whether the
Toolkit posts keypresses as events. The Toolkit reads the keyboard if
the value of skis 1. The Toolkit posts a key event and clears the key
strobe, if a key is pressed. The Toolkit doesn't handle keypresses if the
value of sk is 0. The Toolkit is set to post keyboard events at start up.

The Toolkit handles keypresses as events in the queue, providing a
form of type-ahead.

Machine Language Commands:

SetKeyEvent equ 8 ; command number
setkey.parms db 1 ; parameter list for SetKeyEvent
setkey.sk db 0 ; set key event

Pascal Interface:

Procedure SetKeyEvent (chk_keyboard : boolean);
chk_keyboard is the sk (set keyevent) parameter:;
false= don't check keyboard
true= check the keyboard

Error Codes: (none)

il - 126 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

SetMark

Function: The SetMark command enables a program to select the
character to display for items which are checked in a menu.

Command Number: 20 ($14)

Parameter List:

4 (input, byte) number of parameters
id (input, byte) menu ID
in (input, byte) item number

mk (input, byte) checkmark:
0 = use checkmark character
1 = install new character
char (input,byte) character to display for this item

Description: The SetMark command sets the character which is
displayed when a program calls the Checkltem command. The
checkmark is the default character.

Machine Language Commands:

SetMark equ 20 ; command number
setm.parms db 4 ; parameter list for SetMark
setm.id db 0 ; menu D

setmitem db 0 ; item number

setm.chk db 0 ; checkmark code

setm.char db 0 ; character to use as checkmark

Pascal Interface:

Procedure SetMark (menu_id, item_num: integer; mark_on: boolean;
mark_char : char);
menu_id is the menu ID number.
item_num is the menu item number.
mark_on is the mark on parameter.
mark_char is the mark char parameter.

Error Codes: 8 ($08) Menu ID was not found
9 ($09) Item Number not valid

MOUSETEXT TOOLKIT 1}l -127

SECTION H -- TECHNICAL REFERENCE

SetMenu

Function: The SetMenu command initializes the menu bar data
structure and displays the menu bar.

Command Number: 10 ($0A)
Parameter List:

1 (input, byte) number of parameters
mbs (input, word) pointer to menu bar structure

Description: The SetMenu command initializes a menu bar data
structure and displays the menu bar. Given a pointer to a menu bar
structure (see Tables H-6 and H-8), the SetMenu command fills in the
Data required by the menu commands and saves the pointer for their
use. Once the SetMenu command has been called, the program must
not move the data structure.

The SetMenu command checks to insure that the memory area
reserved by the InitMenu command is sufficient to handle the display
area which will be obscured by the menu bar. This menu bar is
specified by the data structure. If the area is not sufficient, the
SetMenu command returns an error, but still displays the menu bar.

Il-128 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

SetMenu (cont.)

Table H-6. Data Structure for a Menu Bar

Parameter Parameter
Function Size
Number of Menus 1 byte
Reserved for Future Use 1 byte
First Menu Block:
Menu ID (cant be 0) 1 byte
Menu Option Byte 1 byte
Pointer to Title String 2 bytes
Pointer to Menu Data Structure 2 bytes
X Position for Title Display 1 byte *
Left for HiLite and Select 1 byte *
Right for Hilite and Select 1 byte *
Reserved for Future Use 1 byte *

Second Menu Block:
(same structure as First Menu Block)

Last Menu.Block
(same structure as First Menu Block)

* Indicates items filled in by Toolkit

MOUSETEXT TOOLKIT il - 129

SECTION H -- TECHNICAL REFERENCE

SetMenu (cont.)

Table H-7. Contents of Option Byte in Each Menu Block

Z

Bit

Function

Disable Flag **

Reserved for Future Use
Reserved for Future Use
Reserved for Toolkit
Reserved for Toolkit
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use

O=MNWHBOTON
3
=

** The Disable Flag is updated by the DisableMenu command. By
setting the flag in the off position before calling the SetMenu
command, the program will make the menu start out disabled.

Il - 130 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

SetMenu (cont.)

Table H-8. Data Structure for a Menu

Parameter Function Size Note
Number of ltems 1 byte
Left Column of Save Box 1 byte 1
Right Column of Save Box 1 byte 1
Reserved for Future Use 1byte 1
First Menu Item Block:
ltem Option Byte 1 byte
Mark Character 1 byte 2
Character 1 (high bit off) 1 byte 3
Character 2 (high bit off) 1 byte 3
Pointer to ltemn String 2 bytes

Second Menu Item Block:
(same structure as First Menu ltem Block)

Last Menu Item Block:
(same structure as First Menu Item Block

1. Indicates items filled in by the Toolkit.

2. Updated by the SetMark command. The program can set the initial
mark character in the data structure, but afterwards it should change the
mar character only by calling the SetMark command.

3. The program should set this byte to 0 if not using characters.

MOUSETEXT TOOLKIT Il -131

SECTION H -- TECHNICAL REFERENCE

SetMenu (cont.)

Table H-9. Contents of Option Byte in Menu Data Structure

Bit Number Function Notes
7 Disable Flag 1,4
6 temis Filler 2
5 ltemis Checked 3,4
4 Reserved for Toolkit
3 Reserved for Toolkit
2 ltem has Mark 3,4
1 Modifier is SOLID APPLE Key
0 Modifier is OPEN-APPLE Key

1. Updated by the Disableltem Command.

2. If the "ltem is Filler" bit in the Option Byte is on, then Character 1 of
the Menu ltem Block (see Table H-8) is the character used for filler. If
this is not the case, Character 1 and Character 2 are the upper and
lower case values of the key which identifies the item when the
MenuKey command is called.

3. Updated by the Checkltem command.

4. The program can set the initial states of these flags in the data
structure before calling the SetMenu command. Afterwards, the
program should only update the flags by calling the appropriate
commands.

I1-132 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

SetMenu (cont.)

Machine Language Commands:

SetMenu equ 10 ; command number
sm.parms db 1 ; parameter list for SetMenu
sm.mbar dw mymenu ; pointer to Menu Data Structure

Pascal Interface:

Procedure SetMenu (var my_menu_bar : menu_bar);
my_menu_bar is the menu bar structure.
Menuitem = Record

ItemOptB: byte;
MarkChar: byte;
Char1: byte;
Char2: byte;
ItemStrPtr: AltemStr
end;
MenuData = Record
Numltems: byte;
reservel: byte;
reserve2: byte;
reserved: byte;
ltems: array[1..MaxNumltems] of Menultem
end;
MenuTitle = Record
MenulD: byte;
Disabled: byte;
TitlePtr: ~TitleStr;
MDataPtr: MenuData;
reservel: array[1..4] of byte
end;
MenuBarPtr = *MenuBar;
MenuBar = Record
NumMenus: byte;
reservel: byte;
Menus: array[1..MaxMenus] of MenuTitle
end;

ErrorCodes: 10 ($0A) Save area (from InitMenu) is too small.

MOUSETEXT TOOLKIT 1I-133

SECTION H -- TECHNICAL REFERENCE

SetUserHook

Function: SetUserHook sets the address of the user's interrupt
handler.

Command Number: 47 ($2F)
Parameter List:

2 (input, byte) the number of parameters
id (input, byte) the ID number of the interrupt routine
Adr (input,word) the address of the interrupt routine

Description: The SetUserHook command sets the starting address
of the application program'’s interrupt handler routine so that the Toolkit
can pass control whenever the CheckEvent command is called. In
Interrupt Mode, the Toolkit calls CheckEvent internally during interrupt
servicing. Routines installed by the SetUserHook command become
interrupt service routines for the application.

The CheckEvent command can pass control to the program's interrupt
routine either before or after it checks events. The ID parameter
determines at which point the CheckEvent command will call the
interrupt routine. If 1D=0, CheckEvent will call the interrupt routine
before checking events, and if ID=1, CheckEvent will call the interrupt
routine after checking events. In this way there can be an interrupt
routine either before or after event checking.

The CheckEvent command will not check events if the interrupt routine
which is called before event checking (ID = 0) returns to the Toolkit with
the carry flag clear. This allows the application program to handle event
checking itself and bypasses events checking by the Toolkit.

The SetUserHook removes any routine previously installed if the Adr
parameter is set o 0.

Warning: The user interrupt routine can only call Toolkit commands
PostEvent, ShowCursor, HideCursor, and SetCursor. Calling any other
commands from the user interrupt routine could

put the Toolkit into an unknown and bizarre state.

- 134 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

SetUserHook (cont.)

Machine Language Commands:

SetUserHook equ 47 : command number
shook.parms db 2 ; parameter

shook.id db 0 . user's routine ID

shook.addr db 0 : starting address of user's routine

Pascal Interface:
Procedure SetUserHook (hook_id, hook_adr: integer);
hook_id is the ID number (0 or 1) for program's interrupt

routine.
hook_adr is the address of the program's interrupt routine.

Error Codes: 21 ($15) lilegal Id parameter (must be 0 or 1)

MOUSETEXT TOOLKIT II-135

SECTION H -- TECHNICAL REFERENCE

ShowCursor

Function: ShowCursor makes the cursor visible

Command Number: 3 ($03)
Parameter List:
0 (input, byte) the number of parameters

Description: The ShowCursor command makes the cursor visible. I
the cursor is temporarily invisible, ShowCursor has no effect.

Machine Language Commands:

ShowCursor equ 3 ; command number
showcparms db 0 ; parameter list for ShowCursor

Pascal Interface: Procedure ShowCursor;

Error Codes: (none)

Il - 136 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

StartDeskTop

Function: StartDeskTop initializes the mouse and Toolkit routines.

Command Number: 0 ($00)
Parameter List:

6 (input, byte) the number of parameters
id (input, byte) machine 1D byte: $06 = Apple lle or lic
sid (input, byte) subsidiary 1D byte:
$EA = Apple lle
$EO = Apple Hlle with revised ROM
$00 = Apple lic
op (input, byte) operating system byte:
0 = ProDOS
1 = Pascal
st (input or output, byte) slot number of the mouse card
int (input or output, byte) interrupt usage:
0 = Passive Mode only
1 = use interrupts
col {(input, byte) number of text columns:
0 = 40 columns
1 =80 columns

Description: The StartDeskTop command saves the current state of
the computer, initializes the Toolkit routines, and activates the mouse
card. If the calling program specifies slot number 0, StartDeskTop will
check the slots for a mouse card and use the first slot it finds, returning
its slot number in s#. If no mouse card is found, StartDeskTop will set
the Passive Mode and return the int parameter as 0.

If the mouse card is required, the program should set the high bit of the
s# parameter on before calling StartDeskTop. When the high bit is set,
StartDeskTop will return an error condition if it doesn't find a mouse
card.

If the program uses interrupts, it must set the int parameterto 1.

MOUSETEXT TOOLKIT Il - 137

SECTION H -- TECHNICAL REFERENCE

StartDeskTop (cont.)

The ID bytes are the values found at locations $FBB3 and $FBCO in the
Apple ile and Apple lic. The MouseText Toolkit requires the machine ID
byte to be $06.

TheToolkit doesn't interact with the 80-column firmware. The
application program must activate the firmware if it is needed.

StartDeskTop sets the cursor to the arrowhead character (ASCII value
$02) and sets it hidden. After calling StartDeskTop, an application
program can call ShowCursor immediately.

Machine Language Commands:

StartDesktop equ 0 ; command number

start.parms db 6 ; parameter list for StartDeskTop
start.mid d 0 ; machine id byte

start.msid do 0 ; machine subid byte

start.opsys db $00 ; using ProDOS

start.slotn db $00 ; slot no. for mouse (0 = check all slots)
start.int db $01 ; using Interrupt Mode

start.col db $01 ; using 80 columns

Pascal Interface:

Procedure StartDeskTop (mach_id : integer; sub_id: integer;
var slot_num : integer; use_interrupts : boolean;
column_80 : boolean);

mach_id is the machine |D number.
sub_id is the subsidiary ID number.
slot_num is the slot number in the mouse card.
use_interrupts is the interrupt usage parameter:
false= Passive Mode only
true= use interrupts
column_80 is the col (number of text columns) parameter:
false= 40 columns
true= 80 columns

Il - 138 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

StartDeskTop (cont.)

Error Codes:

4 ($04) Machine or operating system not supported
5 ($05) Invalid slot # (less than 0 or greater than 7)

6 ($06) Card not found

11 ($0B) Could not install interrupt handler

MOUSETEXT TOOLKIT 1I-139

SECTION H -- TECHNICAL REFERENCE

StopDeskTop

Function: StopDeskTop deactivates the mouse and the Toolkit
routines.

Command Number: 1 ($01)
Parameter List:

0 (input, byte) the number of parameters
Description: The StopDeskTop command hides the cursor, removes
the link to the interrupt handler, and sets the mouse to an inactive state.
StopDeskTop then restores the computer to the initial state which was
saved by StartDeskTop.

Important Note: Inthe MouseText Toolkit this procedure is
incorporated into the include file called "StartDeskTop.I".

Machine Language Commands:

StopDesktop equ 1 ; command number
stop.parms db 0 ; parameter list for StopDeskTop

Pascal Interface: Procedure StopDeskTop;

Error Codes: (none)

Il - 140 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

TrackGoAway

Function: The TrackGoAway command tracks the mouse and
indicates whether the mouse button was released in the Go-Away Box.

Command: 29 ($1D)
Parameter List:

1 (input, byte) number of parameters
Qo (output, byte) Go-Away status
0 = not in Go-Away Box
1 = mouse in Go-Away Box

Description: The TrackGoAway command tracks the mouse until the
mouse button is released. If the mouse is in the Go-Away Box when
the button is released, the return status is 1. 1If the mouse is not in the
Go-Away Box , the return status is 0.

The application program should call the TrackGoAway command when it
detects the mouse button is down with the mouse in the Go-Away Box
of the front window. If the return status indicates that the button was
released in the Go-Away Box, the application program should then call
the CloseWindow command.

Machine Language Commands:

TrackGoAway equ 29 ; command number
tga.parms d 1 ; parameter list for TrackGoAway
iga.closeit d 0 ; Go-Away status

Pascal Interface

Procedure TrackGoAway (var makeitgoaway: boolean);
makeitgoaway is the go away status:
0= not in the Go-Away Box
1= mouse was in the Go-Away box

Error Codes: 16 ($10) There are no windows

MOUSETEXT TOOLKIT 1l - 141

SECTION H -- TECHNICAL REFERENCE

TrackThumb

Function: The TrackThumb command tracks the thumb until the
mouse button is released, then it updates the data in the Window
Information Data Sructure.

Command Number: 41 ($29)

Parameter List:

3 (input, byte) number of parameters
c (input, byte) control region whose Thumb is
moving:

1 = vertical scroll bar
2 = horizontal scroll bar
pos (output, byte) position the Thumb moved to
stat (output, byte) return status:
0 = Thumb didn't move, pos is
not valiid
1 = Thumb did move

Description: The TrackThumb command tracks the Thumb until the
mouse button is released. The application program should call the
TrackThumb command when the FindControl command indicates that
the mouse button is down in the Thumb. When the mouse button is
released, the TrackThumb command updates the position information
in the Winfo Data Structure and returns the new position of the Thumb.
If the value of the return status is 0, the Thumb is in the same position it
started in, and the value of pos is not valid.

The Thumb position is a number in a range from 0 to the maximum
position on the horizontal or vertical scroll bar. A position of 0 means
the first character of the document should be made visible. A position
equal to the maximum value means the last character of the document
should be made visible.

If the Thumb position is the same as it was when the TrackThumb
command is called, it is treated as if it has not moved. If the Thumb does
move, the TrackThumb command updates the Thumb position in the
Winfo Data Structure.

The TrackThumb command operates only on the front window.

Il - 142 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

TrackThumb (cont.)

Machine Language Commands:

TrackThumb equ 41 ; command number
tkthmb.parms b 3 ; parameter list for TrackThumb
tkthmb.ctl d 0 ; control region affected
tkthmb.pos db 0 ; position Thumb moved to
tkthmb.moved db 0 ; Thumb moved code

Pascal Interface

Procedure TrackThumb (whichctl: ctlarea; var thumbpos: integer;
var thumbmoved: boolean);
whichctl is the control region.
CtlArea = (NotCtl, VerScroll, HorScroll, DeadZone)
thumbpos is the Thumb position.
thumbmoved is the return status: -
0 = Thumb didn't move, thumbpos not valid
1 = Thumb did move

Error Codes:

16 ($10) There are no windows
18 ($12) Bad control ID (not 1 or 2)

MOUSETEXT TOOLKIT 11-143

SECTION H -- TECHNICAL REFERENCE

UpDateThumb

Function: The UpDateThumb command redisplays the Thumb in the
designated position.

Command Number: 42 ($2A)

Parameter List:

2 (input, byte) number of parameters
cl (input, byte) control region whose Thumb is being
moved

pos (input, byte) new position of Thumb

Description: The UpDateThumb command redisplays the Thumb in
the designated position and updates the position value in the Winfo
Data Structure. The UpDateThumb command operates only on the
front window.

The program should call the UpDateThumb command after scrolling or
paging.

Machine Language Commands:

UpDate Thumb equ 42 ; command number

upt.parms db 2 ; parameter list for UpdateThumb
upt.ctl db 0 ; control region affected
upt.newpos db 0 ; new position of Thumb

Pascal Interface

Procedure UpdateThumb (whichctl: ctlarea; thumbpos: integer);
whichctl is the control region.
CtlArea = (NotCitl, VerScroll, HorScroll, DeadZone)
thumbpos is the new Thumb position.

Error Codes: 16 ($10) There are no windows
18 ($12) Bad control ID (not 1 or2)

Il - 144 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

Version

Function: Version returns the Toolkit's version and revision numbers.
Command Number: 19 ($13)
Parameter List:

2 (input, byte) the number of parameters
Ver (output, byte) the version number of the Toolkit
Rev (output, byte) the revision number of the Toolkit

Description: The Version command returns the version and revision
numbers of the Toolkit. The program can use these numbers to
determine compatibility. The MouseText Toolkit Runtime Module is
Version 2.0 released by Apple Computer Inc. The Version routine will
be used only if you write application programs which might be affected
by a future revision of the Runtime Module by Apple.

Machine Language Commands:

Version equ 19 ; command number
ver.parms db 2 ; parameter list for Version
ver.ver db 0 ; version number

ver.rev 0 ; revision number

Pascal Interface:

Procedure Version (var ver_num, rev_num: integer);
ver_num is the version number.
rev_num is the revision number.

Error Codes: (none)

MOUSETEXT TOOLKIT Il - 145

SECTION H -- TECHNICAL REFERENCE

WinBlock

Function: The Win Block command writes a block of text in a window.

Command Number: 36 ($24)
Parameter List:

6 (input, byte) number of parameters

id (input, byte) ID number of window

ptr (input, word) pointer to Document Information Data
Structure for the text to be displayed.
If ptr = 0, WinBlock uses the Dinfo
pointer from the Winfo specified by the
window ID (See OpenWindow).

startx (input,word) X coordinate of upper-left corner of
display window position within the
document window.

starty (input, word) Y coordinate of upper-left corner of
display window position within the
document window.

stopx (input, word) X coordinate of lower-right corner of
display window position within the
document window.

stopy (input, word) Y coordinate of lower-right corner of
display window position within the
document window.

Description: The WinBlock command writes a block of textin a
window. Starix, starly, stopx, and stopy define a rectangle in the
window where characters are displayed. The WinBlock command does
not alter any information outside this rectangle.

The WinBlock command does not update the document.

Setting ID = 0 selects the front window.

- 146 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

WinBlock (cont.)

Machine Language Commands:

WinBlock equ 36 ; command number

wblk.parms db 6 ; parameter list for WinBlock
wblk.id db 0 ; window ID number

wblk.ptr dw 0 . pointer to Dinfo Data Structure
wblk.x1 dw 0 ; X upper-left window coordinate
wblk.y1 dw 0 ; Y upper-left window coordinate
wblk.x2 dw 0 ; X lower-right window coordinate
wblk.y2 dw 0 ; Y lower-right window coordinate

Pascal Interface

Procedure WinBlock (window_id: integer; var my_dinfo: dinfo;
startx, starty, stopx, stopy: integer);

window_id is the window ID number.

my_dinfo is the document information structure.
startx is the X coordinate of the upper-left corner.
starly is the Y coordinate of the upper-left corner.
stopx is the X coordinate of the lower-right corner.
stopy is the Y coordinate of the lower-right corner.

Dinfo = Record
DocPtr: integer;
Reservel: byte;
DocWidth: byte;
DocX: integer;
DocY: integer;
DoclLength: integer;
Reserve2: integers;
Reserved: integer
end;

Error Codes: 15 ($0F) Window ID not found

MOUSETEXT TOOLKIT 1l - 147

SECTION H -- TECHNICAL REFERENCE

WinChar

Function: The WinChar command writes a character in a window.

Command Number: 34 ($22)

Parameter List:

4 (input, byte) number of parameters
id (input, byte) ID number of window
WX (input, word) X coordinate in window
wy (input, word) Y coordinate in window

char (input, byte) character to display
Description: The WinChar command writes a character in a window
at a given position. If the position given is not inside the window, the
WinChar command does not write the character.

The WinChar command does not update the document. Setting ID = 0
selects the front window.

Machine Language Commands:

WinChar equ 34 ; command number
wch.parms db 4 ; parameter list for WinChar
wch.id db 0 ; window ID number
wch.wx dw 0 ; X coordinate in window
wch.wy dw 0 ; 'Y coordinate in window
wch.char db $00 : ASCII character to display

Pascal Interface

Procedure WinChar (window_id, windowx, windowy: integer;
my_char: char);

window_id is the window ID number.

windowx is the window X coordinate.

windowy is the window y coordinate.

my_char is the character to display.

Error Codes: 15 ($0F) Window 1D not found

Il - 148 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

WindowScreen

Function: The WindowScreen command converts window
coordinate values to screen coordinates.

Command Number: 32 ($20)

Parameter List:

(input, byte) number of parameters
(input, byte) 1D number of window to use
(input, word) X coordinate in the window
(input, word) Y coordinate in the window
(output, word) X coordinate for the screen
(output, word) Y coordinate for the screen

2R 87

Description: The WindowScreen command converts passed
coordinate values from window coordinates to screen coordinates.
Setting ID = 0 selects the front window.

Machine Language Commands:

WindowScreen equ 32 ; command number
w2s.parms db 5 parameter list

w2s.id db 0 ; window ID number
W2S.WX dw 0 ;. X coordinate in window
w2s.wy dw 0 ; 'Y coordinate in window
w2s.8X dw 0 ; X screen coordinate
w2s.sy dw 0 ;Y screen coordinate

Pascal Interface

Procedure WindowScreen (window_id, windowx, windowy: integer;
var screenx, screeny: integer);
window_id is the window ID number.
windowx is the window X coordinate.
windowy is the window Y coordinate.
screenx is the screen X coordinate.
screeny is the screen Y coordinate.

Error Codes: 15 ($0F) Window not found

MOUSETEXT TOOLKIT i - 149

SECTION H -- TECHNICAL REFERENCE

WinOp
Function: The WinOp command performs an operation on a window.
Command Number: 37 ($25)

Parameter List:

4 (input, byte) number of parameters
id (input, byte) ID number of window
WX (input, word) X window coordinate
wy (input, word) Y window coordinate
op (input, byte) operation to perform:

26 ($1A) = clear to start of window*
27 ($1B) = clear to start of line*
28 ($1C) = clear window
29 ($1D) = clear to end of window
30 ($1E) = clearline
31 ($1F) = clear to end of line
* Operations do not clear the character at position X,Y.

Description: The WinOp command clears all or a portion of a
window, depending on the specific operation code. Except for
operation code 28 (ClearWindow), the WinOp command clears the
characters from position X,Y to the end of the area indicated by the
operation. The forward "clears” include the character at position XY,
but the backward "clears"” (i.e., clear to start of the window and clear to
start of the line)do not. These operations clear from the start of an area,
up to but not including, position X,Y.

Setting ID = 0 selects the front window.

Machine Language Commands:

WinOp equ 37 ; command number
wop.parms db 4 ; parameter list for WinBlock
wop.id db 0 ; window ID number
WOp.WX dw 0 . X window coordinate
wop.wy dw 0 ; Y window coordinate
wop.op db 0 ; window operation

It-150 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

WinOp (cont.)

Pascal Interface

Procedure WinOp (window_id, windowx, windowy: integer;
opcode: byte);

window_id is the Window ID number.
windowx is the window X coordinate.
windowy is the window Y coordinate.
opcode is the code for the operation to perform.

Error Codes: 15 ($0F) Window |D not found

MOUSETEXT TOOLKIT Il-151

SECTION H -- TECHNICAL REFERENCE

WinString

Function: The WinString command writes a string in a window.

Command Number:

Parameter List:

5
id
wx
wy
ptr

res

(input, byte)
(input, byte)
(input, word)
(input, word)
(input, word)
(input, byte)

35 ($23)

number of parameters
ID number of window
X coordinate in window
Y coordinate in window
pointer to the string
must be 0.

Description: The WinString command writes a string in a window at a
given position. The WinString command does not wrap around. If the
string extends past the right edge of the window, the WinString
command truncates it. The WinString command does not display any
characters in the string that fall outside the edges of the window.

The WinString command does not update the document.

Setting ID = 0 selects the front window.

Machine Language Commands:

WinString

wstr.parms

wstr.id

wsir.wx
wslr.wy
wstr.ptr
wstr.res

equ 35

db 5
db 0
dw 0

&6¢¢
Coo

; command number

. parameter list for WinString
; window ID number

; X coordinate in window

; Y coordinate in window

; pointer to string

; reserved

I1-152 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

WinString (cont.)

Pascal Interface:

Procedure WinString (window_id, windowx, windowy: integer;
my_string: string);
window _id is the window ID number.
windowx is the window X coordinate.
windowy is the window Y coordinate.
my_string is the string to write.

Error Codes: 15 ($0F) Window 1D not found

MOUSETEXT TOOLKIT 11-153

SECTION H -- TECHNICAL REFERENCE

WinText

Function: The WinText command writes ASCII characters in a
window.

Command Number: 38 ($26)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) ID number of window

WX (input, word) X coordinate in window

wy (input, word) Y coordinate in window

pir (input, word) pointer to the first character of text

len (input, byte) number of characters to display
Description: The WinText command writes ASCIl characters at a
given position in a window. The WinText command does not wrap
around. If the characters extend past the right edge of the window, the
WinText command truncates them. The WinText command does not
display any characters that fall outside the edges of the window.
The WinText command does not update the document.
Setting ID = O selects the front window.

Machine Language Commands:

WinText equ 38 ; command number
wixt.parms db 5 ; parameter list for WinString
wixt.id db 0 ; window ID number
wixt.wx dw 0 ; X coordinate in window
wixt.wy dw 0 ;'Y coordinate in window
wixt.ptr dw 0 ; pointer to first character
wixt.len db 0 ;. number of characters

Il - 154 MOUSETEXT TOOLKIT

SECTION H -- TECHNICAL REFERENCE

WinText (cont.)

Pascal Interface:

Procedure WinText (window_id, windowx, windowy, text_buffer,
textlength: integer);

window_id is the window 1D number.

windowx is the x coordinate in the window.

windowy is the y coordinate in the window.
text_buffer is the pointer to the first character of text.
textlength is the number of characters to display.

Error Codes: 15 ($0F) Window 1D not found

MOUSETEXT TOOLKIT II-155

. Pascal Data Structures

This chapter presents the specifications of the data types and data
structures used in the MouseText Toolkit, including the Menu Data
Structure, the Window Information Data Structure, and the Document
Information Data Structure.

The following constants and data types are used in the Pascal Interface.

Constants

MaxMenus = 3 (A maximum of 3 menus is supported).

MaxTitleStr = 12 (A maximum of 12 characters per menu title)
MaxltemStr = 12 (A maximum of 12 characters per menu item name)
MaxNumitems = 7 (A maximum of 7 menu items is supported).
SaveSize =256.

The following event type values are provided as constants rather than
as an enumerated type so that the user can define and handle their
own events.

No_Event =0
Button_Down = 1
Button_Up =2
Key_Down =3
Drag=4
Apple_Key =5

Update_Event = 6
A single byte value is defined as: byte = char;
Event

An eventis defined as: type_event = record
evtkind : byte;
char1 : byte;
char2 : byte;
reservel : byte
end;

MOUSETEXT TOOLKIT 11 -157

SECTION | -- PASCAL DATA STRUCTURES

where:

evtkind is the event type value (see above under Constants).
chartis event byte 1, X coordinate or key value.

char2is event byte 2, Y coordinate or key modifier.

reservel is reserved for use by the ToolKit.

Menu titles are defined as:

TitleStr = array[1..MaxTitleSir] of char;

Menu Item Names

Menu item names are defined as:

ItemStr = array[1..MaxltemStr] of char;

Menu Item Blocks

A Menu item block is defined as:

where:

Menultem = record
ltemOptB : byte;
MarkChar : byte;
char1 : byte;
char2 : byte;
ItemStrPtr : AltemStr
end;

ItemOptB (the first 8 bits):

open_apple is on when modifier is OPEN-APPLE key; {bit 0}
solid_apple is on when the modifier is SOLID-APPLE key;
item_has_markis on when the item has mark;

reserve2, reserve3 are reserved for use by the ToolKit;
item_is_checkedis on when the Item Is Checked;
item_is_filleris on when the ltem Is Filler;

disable_flagis the Disable Flag; {bit 7}

Il-158 MOUSETEXT TOOLKIT

SECTION I -- PASCAL DATA STRUCTURES

markcharis the mark characler;

chartis Character 1;
char2is Character 2;

itemStrPlris Pointer to liem String;

Menu Data Structures
The Data Structure for a menu is defined as:

MenuData = record
Numltems : byte;
reservel : byte;
reserve?2 : byte;
reserved : byte;
items : array [1..MaxNumltems] of Menultem
end;

where:

Numitems is the Number of items;
reservel, reserve2, reserved are reserved for ToolKituse;
items is the array of Menu Item Blocks;

Menu Title Blocks

A Menu Title Block is defined as:

MenuTitle = record
Menuld : byte;
Disabled : byte;
TitlePtr : ATitleStr;
MDataPtr : "MenuData;
reservel : array [1..4] of byte
end;

where:

menuidis the Menu iD;

MOUSETEXT TOOLKIT 1 -159

SECTION | -- PASCAL DATA STRUCTURES

disabledis the Disable Flag (only bit 7 can be used);
titleptr is the Pointer 10 Title String;

mdataptris the Pointer to Menu Data Structure;
reservedis reserved by the ToolKit;

Menu Bars
The menu bar is defined as:

MenuBar = record
NumMenus : byte;
reservel : byte;
Menus : array [1..MaxMenus] of MenuTitle
end;

where:

nummenus is the Number of Menus;
reservedis reserved for use by the ToolKit;
menus is the array of Menu Blocks;

MenuBarPtr = *MenuBar;

Window Information Data Structures
A Window Information Data Structure is defined as:

Winfo = record

Windowld : byte;
WinOpt : byte;
TitlePtr : ATitleStr;
WindowX : integer;
WindowY :integer;
ContWidth : byte;
ContLength : byte;

MinContWidth: byte;
MaxContWidth: byte;
MinContLength: byte;
MaxContLength: byte;

II- 160 MOUSETEXT TOOLKIT

SECTION 1 -- PASCAL DATA STRUCTURES

where:

DinfoPtr: ~Dinfo;
HorContOpt : byte;
VertContOpt : byte;

HThumbMax : byte;
HThumbPos : byte;
VThumbMax : byte
VThumbPos : byte
WinStatus : byte;

Reserve1 : byte;

NextWinfo = *Winfo

Reserve?2 : byte;
Reserve3 : byte;
Reserve4 : byte;
Reserve5 : byte;
Reserves6 : byte;
Reserve7 : byte;
end;

windowid is the Window 1D #

WinOpt
bit 0is dialog/alert window flag
bit 1is on when Go-Away Box present
bit 2is on when Grow Box present
bit 7is user routine adr/dinfo ptr

titleptris Title Str ptr

windowx is Window Location X
windowy is Window Location Y

contwidth is Current Content Width
contlength is Current Content Length

mincontwidth is Min Content Width
maxcontwidth is Max Content Width
mincontlength is Min Content Length
maxcontlength is Max Content Length

MOUSETEXT TOOLKIT

It-161

SECTION | -- PASCAL DATA STRUCTURES

dinfoptris Dinfo Ptr

HorContOpt
bit 0is on when horizontal scrollbar active
bit 6is on when horizontal Thumb present
bit 7is on when horizontal scroll bar present
VertContOpt
bit 0is on when vertical scroll bar active
bit 6is on when vertical Thumb present
bit 7is on when vertical scroll bar present

hthumbmax is horizontal scroll maximum
hthumbpos is current horizontal Thumb position
vthumb is vertical scroll maximum

vthumb is current is current vertical Thumb position

WinStatus
bit 7is window open

nextwinfo is the pointer to the next winfo structure

Winfo_Ptr = Winfo;

Document Information Data Structures
A Document Information Data Structure (Dinfo) is defined as:

dinfo = record
DocPtr : integer
Reservel : byte;
DocWidth : byte;
DocX : integer;
DocY : integer;
DocLength: integer;
Reserve2: byte;
Reserve3: byte
end;

Il - 162 MOUSETEXT TOOLKIT

SECTION | -- PASCAL DATA STRUCTURES

where:

docptris Document ptr

reserved is reserved by the TooiKit

docwidth is Document Width

docx is Document X

docy is Document Y

doclength is Document Length

reserve2, reserved are reserved by the ToolKit

Dinfo_ptr = ADinfo,

Screen Region Types
The type of screen region is defined as:

Type_Area = (InDeskTop, InMenubar, InContent,
inDrag, InGrow, InGoAway);

where each value is as returned by FindWindow:

inDeskTop is in desktop
inMenubaris in menu bar
inContent is in content region
inDrag s in drag region
inGrowis in Grow Box
inGoAway is in Go-Away Box

Control Region Types
The type of control region is defined as:

CtlArea = (NotCtl, VerScroll, HorScroll, DeadZone),
where each value is as returned by FindControl:

notctlis in content region

verscrollis in vertical scroll bar

horscrollis in horizontal scroll bar
deadzone is none of the above

MOUSETEXT TOOLKIT i - 163

SECTION | -- PASCAL DATA STRUCTURES

Control Region Part Types
The type of a pan of a control region is defined as

CtlPart = (Ctllnactive, ScrollUpLeft, ScrollDownRight,
PageUpLeft, PageDownRight, Thumb });

where each value is as returned by FindControl:

ctlinactive is never returned
scrollupleft is up arrow of vertical scroll bar

or Left-Arrow of horizontal scroll bar
scrolldownright is Down-Arrow of vertical scroll bar

or Right-Arrow of horizontal scroll bar
pageupleftis "page up” region of vertical scroll bar

or "page left" region of horizontal scroll bar
pagedownrightis "page down" region of vertical scroll bar

or "page right" region of horizontal scroll bar
thumbis Thumb of scroll bar

Il - 164 MOUSETEXT TOOLKIT

Appendix |
The AppleMouse Il Interface Card

To use the AppleMouse with an Apple //, Apple //+, or Apple //e, you
need the AppleMouse Ii Interface Card installed in one of the
expansion slots (slot 4 is recommended). Like most Apple peripheral
cards, it contains I/O firmware that is executed by the 6502 central
processor whenever you access the slot. The mouse interface card
also contains its own microprocessor with firmware and a timer. The
microprocessor on the card keeps track of the position of the mouse
and the state of the button on the mouse. The microprocessor handles
the transfer of mouse information and other communications between
the card and the central processor.

Passive Versus Active Operation

Most positioning devices used with the Apple i, such as the joystick
and the graphics tablet, are passive devices; that is, they don't require
any processing until an application program requests information from
them. The mouse, on the other hand, is an active device: movement of
the mouse requires near-constant attention to keep the system from
losing track of its position and direction.

A computer normally uses interrupts to handle this need for immediate
response. When the mouse is moved rapidly, it generates interrupts
often enough to have a significant impact on the computer's operation.
It the computer is engaged in other tasks that are dependent on
precise timing, as the Apple Il often is, the added burden of processing
the interrupts from the mouse can be intolerable.

To reduce the interrupt burden on the Apple II's processor, the
AppleMouse il uses an intelligent interface card. The card has an
MC6805 microprocessor that is dedicated to keeping track of the
mouse, thus making it possible for the AppleMouse Il to operate as
either an active device or a passive device. In the Passive Mode, the
MC6805 determines the instantaneous movement and direction of the
mouse and stores the information on the card until the processorin the
Apple Il requests the information. Thus, the AppleMouse Il can act like
a passive device in applications that cannot tolerate interrupts, or, for

MOUSETEXT TOOLKIT Il - 165

SECTION J -- APPENDIX |

applications where interrupts are appropriate, it can operate as an aclive
device.

Mouse Interrupts

One reason to use the mouse in Interrupt Mode is to be able to move a
cursor on the display screen without the flicker produced by updating
the cursor during the wrong part of the display refresh cycle. In
Interrupt Mode, the Applemouse Il generates interrupts that are
synchronized with the vertical blanking interval.

The Apple lle has a signal named VBL, but it isn't available as an
interrupt. The VBL signal is not available at all on an Apple ! or Apple Il
Plus, so the mouse card has a hardware timer that it uses to generate
interrupts synchronized with the vertical blanking interval.

Because the AppleMouse Il transmits an interrupt request only at the
beginning of a vertical blanking interval, it cannot generate interrupts
faster than 60 times per second. This limits the number of mouse
interrupts and keeps the mouse from monopolizing the central
processor.

The TimeData Firmware Call

There is a little-used call in the firmware on the AppleMouse il card. That
call sets the interrupt rate to either 50 or 60 Hz. The default is 60
Hz.,which keeps the VBL interrupts the card generates in step with the
true VBL on a North American Apple Il. For European machines, the
VBL rate is 50 Hz.

The low byte of the TimeData entry-point address is $Cn1C. Input data
is in the accumulator. With the accumulator set to 0, TimeData sets the

VBL rate to 60 Hz. With the accumulator set to 1, the call sets the VBL

rate to 50 Hz. The only valid accumulator contents for this call are 0 and
1. On out, the carry bit is clear and the screen holes are unchanged.

You should call TimeData just before calling InitMouse. If you do not call
TimeData first, the VBL rate will be set to 60 Hz. when you call
InitMouse.

Il - 166 MOUSETEXT TOOLKIT

Appendix |l
The Mouse Firmware Interface

On the Apple lic, the interface hardware and firmware for the
AppleMouse Il is built in. On the Apple lle, the user must install a mouse
interface card in order to use the AppleMouse Il. The interface card for
the AppleMouse |l contains the firmware that communicates with and
controls the mouse hardware.

The Apple Il MouseText Toolkit uses the mouse firmware in the Apple
lic or in the card in the Apple lle to operate the mouse. This appendix
describes the interface to the firmware.

Note: If you do all your mouse operations via Toolkit commands, you
do not need to communicate directly with the mouse firmware and so
do not need to learn the material in this appendix..

Finding the Mouse Card

The AppleMouse l interface card can be installed in any peripheral slot
except slot 0; use of slot 4 is recommended but not required. The
firmware on the card stores signature bytes in five of the memory
locations assigned to the slot it is in. The addresses and values of the
signature bytes are as follows:

Address Value

$Cn05 $38
$Cn07 $18
$Cn0B $01
$Cn0C $20
$CnFB $D6

The letter n in the addresses stands for the slot number. Your program
can determine which slot the mouse card is in by reading the memory
locations for each value of n from 1 to 7 and comparing the values with
the values shown above.

MOUSETEXT TOOLKIT Il - 167

SECTION J -- APPENDIX I

Reading Mouse Data

The mouse firmware stores position and status information in the
display buffer locations reserved for the slot the mouse card is in (the
screen holes, also called mouse holes). When you call the Readmouse
routine or the ServeMouse routine (described later in this appendix),
the firmware updates the information in the mouse holes. Your program
can address these locations by using the slot number as an index, as
indicated by the letter nin Table J-1.

Note: Chapter 6 of the Apple lle Reference Manual describes the way

you address the reserved screen locations.

Warning: If your program ever uses the auxiliary memory in the Apple
lle, be sure that you get all the switches set back to main memory before
you use the Toolkit. If you write data into the reserved screen locations
in the auxiliary memory, not only will the mouse firmware not read
them,but you may cause other firmware to malfunction

(spelled c-r-a-s-h).

Table J-1. Screen Locations for Mouse Data

Address Contents

$478 + n Low byte of X position
$4F8 +n Low byte of Y position
$578 + n High byte of X position
$5F8 +n High byte of Y position
$678 +n (used by the firmware)
$6F8 +n (used by the firmware)
$778 +n Button and interrupt status
$7F8 +n Current Operating Mode

In its normal operating position (oriented with its cable directed away
from the user), the value of the X position coordinate increases as a
mouse is moved to the right and the value of the Y position coordinate
increases as the mouse is moved toward the user. The maximum
values of X and Y are -32768 to +32767, but the firmware normally
clamps them to a range 0 to +1023 ($0 to $3FF). You can change the

Il - 168 MOUSETEXT TOOLKIT

SECTION J -- APPENDIX I

clamping range by calling the ClampMouse routine, which is described
later in this appendix.

The smallest mouse movement that the mouse hardware can detect is
one count in either the X or Y direction; that is equivalent to about 0.01
inch (0.3 mm). The largest movement that the hardware can handle is
16 bits in either axis. A change of position from -32768 to 32767
corresponds to about 60 feet of mouse movement.

The bits in the button and interrupt status byte are assigned as shown
in Table J-2, where a value of 1 means the function is true.

Table J-2. Button and Interrupt Status Byte
Bit# Function

Button is down

Button was down

Mouse moved since last reading
(used by the firmware)

Video blanking interrupt

Button press interrupt

Mouse movement interrupt
(used by the firmware)

O=NWLOION

Operating Modes

When you turn on the power, the firmware comes up in the off
condition with its X and Y position register set to 0. you activate the
firmware by loading the accumulator with a mode byte and calling the
SetMouse routine. The settings of the bits in the mode byte determine
the mode of operation, as shown in Table J-3.

MOQUSETEXT TOOLKIT I - 169

SECTION J -- APPENDIX I

Table J-3. Bits in the Mode Byte
Bit# Funclion

74 (used by the firmware)

Enable interrupt on video blanking (VBL)

Enable interrupt on next VBL after button pressed
Enable interrupt on next VBL after mouse movement
Turn on the mouse

[=JE o S]

You can enable any combination of interrupts by setting the appropriate
bits in the mode byte. you can set mode combinations that don't make
sense, such as $02: Mouse Off plus Enable Interrupt On Mouse
Movement, which acts just like $00: Mouse Off.

Setting the low bit in the mode byte to 0 turns off certain functions of
the mouse: the mouse position is not tracked, calls to Readmouse
don't update the status byte or the screen holes, and button and
movement interrupts are not generated. Other mouse functions will
work as usual: PosMouse and ClearMouse will change the mouse
position data, ClampMouse will set new values, and so on. Turning the
mouse on and off by changing the mode byte does not reset any
mouse values.

Warning: You must not set the high bits of the mode byte. Mode
byte values greater than $0F will cause the SetMode routine to return
an illegal-mode error.

Passive Mode

Calling the SetMouse routine with a mode byte of $01 puts the firmware
into Passive Mode (no interrupts occur). Passive mode is the simplest
way to use the mouse, and it is the only way to use it in systems with
peripherals that cannot tolerate interrupts.

In Passive Mode, the interface card stores mouse information without
affecting the operation of the CPU. When your program calls the
Readmouse routine, the firmware updates the mouse information in the
screen locations, where your program can read it.

Il - 170 MOUSETEXT TOOLKIT

SECTION J - APPENDIX Il

Interrupt Mode

If your program uses interrupt, it must include an interrupt handling
routine that calls the ServeMouse routine. The ServeMouse routine
determines whether the interrupt was caused by the mouse. If it was,
the ServeMouse routine calls ReadMouse.

Depending on the setting of the mode byte, the firmware can interrupt
the CPU on one or more of the following events:

0 Mouse motion
o Mouse button pressed
o Display video blanking

You can set the mode byte to $08 -- mouse off, VBL interrupt on -- to
generate interrupts on display video blanking (VBL) only. Regardless
of the kind of event that causes the interrupt, the mouse hardware will
interrupt the CPU only at the beginning of the video blanking interval,
which occurs every 60th of a second. This enables your program to
update the display between screen refresh cycles and avoid making
the display flicker.

Unclaimed Interrupts

There is a bug in the AppleMouse |l firmware that can effect the way
ServeMouse Works. If the application program takes more than one
video blanking cycle (normally about 16 milliseconds) to respond to a
mouse-generated interrupt, there is a chance that ServeMouse will not
claimthe interrupt. In a ProDOS environment, this can be fatal. There
are several possible ways to avoid this problem.

One approach, if you are not working under a system like ProDOS, is to
make sure that unclaimed interrupts aren't fatal to your system and just
ignore them. Another solution is to make sure that you always service
interrupts within one VBL cycle (one sixtieth of a second). If you have
to turn off interrupts for that long or longer, you should first use
SetMouse to set the mode to 0 and call ServeMouse to clear any
existing interrupt.

MOUSETEXT TOOLKIT #-171

SECTION J -- APPENDIX H

If you are working under an established operating system, like ProDOS, |
for which unclaimed interrupts are fatal, you can use one of the
following suggestions to make sure that all interrupts are claimed.

If the mouse is the only interrupting device, write your interrupt handler
so that it claims all interrupts.

If the mouse is not the only interrupting device, there are three ways of
handling the problem. One is to write the mouse interrupt handler to
claim all unclaimed interrupts and make sure that it is installed last.
Another method is to write a spurious interrupt handler (sometimes
called a demon), not associated with any device, that claims all
unclaimed interrupts. This interrupt handler must be installed last. The
third method is to include code in every interrupt handler to determine
whether that interrupt handler is last. If it is, then that interrupt handler
claims any unclaimed interrupts, even if not generated by its device.

Making Calls to Mouse Firmware

Your programs make calls to the mouse firmware by means of a table
that conforms to Apple Firmware Protocol 1.1, described in the Apple
lle Design Guidelines as Pascal 1.1 Protocol. Table J-4 contains the low
byte of the entry address of each of the firmware routines. (The high
byte of each address is $Cn, where n is the number of the slot the
mouse interface card is in.) The address bytes are stored in locations
$Cn12 through $Cn19, arranged as shown in Table J-4.

Table J-4. Entry Point Address Bytes
Location Contents

$Cni2 Low byte of SetMouse entry-point address
$Cn13 Low byte of ServeMouse entry-point address
$Cni4 Low byte of ReadMouse entry-point address
$Cn15 Low byte of ClearMouse entry-point address
$Cn16 Low byte of PosMouse entry-point address
$Cn17 Low byte of ClampMouse entry-point address
$Cn18 Low Byte of HomeMouse entry-point address
$Cn19 Low byte of InitMouse entry-point address

Il-172 MOUSETEXT TOOLKIT

SECTION J -- APPENDIX I

Thus, for a mouse card installed in slot 4, you can calculate the entry
address for the SetMouse routine by adding $C400 to the contents of
location $C412. Your program can use the values in the table to
construct a jump table to use for calling the routines.

By the way: You must disable interrupts before calling the mouse
firmware.

Parameter Passing

Before calling any of the firmware routines, your program must load the
X and Y index registers with the number of the slot the mouse card is in,
as follows:

Xindex register: $Cn
Y index register: $n0

Your program passes information to certain firmware routines via the
accumulator and the screen locations, as noted in the descriptions of
the routines.

When your program regains control, the contents of the accumulator
and the index registers will be undefined, except as noted in the
descriptions of the routines. The carry bit indicates the error status of
the routine just ended:

Successful execution: C=0
Unsuccessful execution: C =1

The Firmware Routines

This section describes the functions of the firmware routines whose
entry-point addresses are given in the previous section.

SetMouse

SetMouse starts the mouse operating in the mode indicated by the
contents of the accumulator, as defined in the "Operating Modes"
section earlier in this appendix. If the mode byte is greater than $0F,
the routine will return with the carry bit set to one, indicating an error.

MOUSETEXT TOOLKIT 1I-173

SECTION J -- APPENDIX Il

This routine does not clear the screen locations used for storing mouse
data.

ServeMouse

If the pending interrupt was caused by the mouse, ServeMouse sets
the status byte at location $778 + n to show what event caused the
interrupt. Upon return from this routine, the carry bit is set to 0 if the
interrupt was caused by the mouse; otherwise, the carry bit is setto 1.
This routine does not update the other mouse screen locations.

Note: This routine is an interrupt service routine; it does not require
particular values in the accumulator or the index register.

ReadMouse

Readmouse transfers the current values of the mouse X and Y position
and button data into the appropriate screen locations and sets bits 1, 2,
and 3 of the status byte at location $778 + nto 0. On return, the carry
bitis 0.

ClearMouse

ClearMouse sets the mouse’s X and Y position values to zero, both on
the interface Card and in the screen locations. It does not change the
contents of the interrupt and button status byte. On return, the carry bit
is 0.

PosMouse

PosMouse sets the mouse X and Y position to the values in the screen
locations. On return, the carry bit is 0.

Warning: Do not change the contents of any screen locations other
than the X and Y position locations.

il - 174 MOUSETEXT TOOLKIT

SECTION J -- APPENDIX Il

ClampMouse

ClampMouse sets the clamping bounds for either the X or Y position
value. To clamp the X direction, load the accumulator with a); to clamp
the Y direction, load the accumulator with a 1. Store the new bounds in
the slot 0 screen locations, as follows:

$478 low byte of lower clamping bound
$4F8 low byte of upper clamping bound
$578 high byte of lower clamping bound
$5F8 high byte of upper clamping bound

On return, the carry bit is 0 and the X and Y position screen locations are
undefined. To get valid position data, you have to call the ReadMouse
routine.

HomeMouse

HomeMouse sets the internal position values to the upper-left corner of
the clamping window. On return, the carry but is 0 and the X and Y
screen locations are changed.

InitMouse

InitMouse sets internal mouse data to default values and synchronizes
the interrupt timer on the card with the display vertical blanking. On
return, the carry bit is zero and the screen locations are unchanged. To
get valid position data, you have to call the ReadMouse routine.

Warning: On the Apple |l plus, the InitMouse routine clears the Hi-Res
screen in order to synchronize its timer with the vertical blanking, so you
should display Hi-Res graphics only after you have called InitMouse.

MOUSETEXT TOOLKIT 1l - 175

Appendix lil
ToolKit Error Codes

Table J-5 is a cumulative list of the error codes returned in the 6502's
accumulator when a MouseText Toolkit command encounters an error
condition. The error codes returned by each command are listed with
the commands in Section H.

In addition to the error codes returned by individual commands, the first
three listed here are generic error codes that can be returned by any
command.

Table J-5. Mousetext Toolkit Error Codes

1 ($01) lllegal Command number

2 ($02) Wrong number of parameters

3 ($03) StartDeskTop hasn't been called

4 ($04) Machine or operating system not supported

5 ($05) Invalid slot number (less than 0 or greater than 7)

6 ($06) Mouse Interface Card not found

7 ($07) Interrupt mode in use (Program specified interrupt
mode in StartDeskTop, so it can't call CheckEvents.)

8 ($08) Menu ID was not found

9 ($09) Item Number is not valid

10 ($0A) Save area (from InitMenu) is too small

11 ($0B) Toolkit could not install interrupt handler

12 ($0C) Window with same ID already open

13 ($0D) InitWindowMgr buffer too small for this window

14 ($0W) Bad Winfo -- tried to open window with ID = 0, or
conflicting max and min width or length

15 ($0F) Window ID number not found

16 ($10) There are no windows

17 ($11) Error returned by user hook routine

18 ($12) Badcontrol ID (not 1 or 2)

19 ($13) Event queue full, event not posted

20 ($14) lliegal event, event not posted

21 ($15) llegal UserHook ID number (not 0 or 1)

22 ($16) Operation cannot be performed

MOUSETEXT TOOLKIT i - 177

Appendix IV
Toolkit Disk Organization

The MouseText Toolkit is shipped on a "flippy" disk. The volume name
of each side is /MouseText/. The contents of side one are in the root
directory. The contents of side two are contained in the directory
"PascalTools". The contents of each side are listed below.

/IMOUSETEXT/ Side 1

EILENAME EILETYPE ~ DESCRIPTION

Demo?2 Bin
Demo2.S Text
Exit.| Text
KIX.SYSTEM System
Load.| Text

Makeabs $FC
Mtxkit.abs Bin
Mtxkit.obj $FE

ProDOS System
Rel2abs Bin
Tokniz. Text

Demo program {Object code)
Demo program (Source code)
KIX exit routine

KIX System File

Utility program

Utility program

MouseText Runtime Module
MouseText Runtime Module
ProDOS Operating System
Utility program

Utility program

MOUSETEXT TOOLKIT 1t-179

SECTION J -- APPENDIX IV

/MOUSETEXT/ Side 2
FILENAME EILETYPE
PascalTools Dir
Demot Bin
Demo1.P Text
Demola Bin
Demo1la.P Text
DemoWindow.I Text
LIB Bin
Mixkit.abs Bin
Mixkit.con Text
Mtxkit.typ Text
P.out Text
Bload.| Text
GetMachlD Text
KeyBoardMouse.| Text
SetUserHook.!

PascintAdr.|

StartDeskTop.|

Version.!

HideCursor.| Text
ObscureCursor.|

SetCursor.l

ShowCursor.|

CheckEvent.| Text
FlushEvent.|

GetEvent.l

PeekEvent.|

PostEvent.|

SetKeyEvent.|

DESCRIPTION
Disk Directory

Demo program (object code)
Demo program (source code)
Demo program (object code)
Demo program (source code)
Demo include file

Pascal Runtime Library
MouseText Runtime Module
MouseText Constants
MouseText Types

Intermediate Assembly file
Pascal utility program
Utility program

Startup Commands

Cursor Commands

Event-Handling Commands

Il - 180 MOUSETEXT TOOLKIT

SECTION J -- APPENDIX W12

/MOUSETEXT/ Side 2 (cont.) R
FILENAME FILETYPE DESCRIPTION

Checkltem. Text Menu Commands
Disableltem.|

DisableMenu.|

HiLiteMenu.l

InitMenu.|

MenuKey.l

MenuSelect.|

SetMark.|

SetMenu.l

CloseAlll Text Window Commands
CloseWindow.|
DragWindow.|
FindWindow.|
FrontWindow.!
GrowWindow.l
GetWinPitr.|
InitWindowMgr.|
OpenWindow.I
ScreenWindow.|
SelectWindow.|
TrackGoAway.|
WinBlock.|
WinChar.l
WinOp.|
WindowScreen.|
WinString.|
WinText.|

ActivateCtl.| Text Control Commands
FindControl.l

SetCtiMax.|

TrackThumb.l

UpdateThumb.|

MOUSETEXT TOOLKIT 11 - 181

Loon X
s oMl by

Lahorygs o

Dhyss B

bote -

bagre
Qs

Appendix V
Other Pointing Devices

The Toolkit supports other pointing devices (besides mice). Any
hardware that appears to the computer as a mouse will be treated like a
mouse and will work with the Toolkit. Other hardware can be supported
by attaching a driver to the Toolkit via the AttachDriver call.

When a driver is attached, the Toolkit calls the driver whenever it would
ordinarily call the mouse. The Toolkit calls the mouse at the following
times.

The mouse is inited and turned on when desktop is started.
The mouse is homed when the desktop is started.

The mouse is set (turned off) when the desktop is stopped.
The mouse is served (in interrupt mode) on each interrupt
(whether or not it was generated by the mouse).

Each time CheckEvents is called, the mouse is read.

During initialization the mouse is clamped.

When the scale factors are changed, the mouse is clamped.
When a mouse event is posted, the mouse is set.

During Keyboard mouse activities (both safety net and
others), the mouse is set.

0000

00000

The device driver must be able to support the followng calls:

SetMouse $12
ServeMouse $13
ReadMouse $14
ClearMouse $15
PosMouse $16
ClampMouse $17
HomeMouse $18
InitMouse $19

The driver is called at the address passed in the AttachDriver call with
the call number listed above in the Y register. The A register also
contains information for ClampMouse and SetMouse. For ClampMouse
the A register holds zero for clamping in the X direction and holds 1 for
clamping in the Y direction. For SetMouse, the A register holds the
mouse modes as follows:

MOUSETEXT TOOLKIT 1i-183

SECTION J -- APPENDIX V

Table J-6. A Register Contents

bng g,-,;v,',,,:.:ZﬂQ ' : Not used
-mimpona snde - Enable interrupt on video blanking (VBL)
1t ovorfw ore aufirs -+ Enable interrupt on next VBL after button pressed
otszad wia Litins Enable interrupt on next VBL after movement
W'Oﬂ yh oG 0 . MOUSG on/off

T
.Only. blts 0 and 3 arz used by the Toolkit.
priwollot o 2
atais passed o aﬂd from the driverin a 5 byte parameter region
located at an address returned by the AttachDriver call. The first four
bytes are normally mouse position information (except during the
ClampMouse call when they are min and max values). The last byte is
"7 the mouse buiton and interrupt status byte defined as follows:

e Table J- 7 “Mouse Status and Interrupt Byte Status Modes

~———" Bitt F
Button is down

Button was down at last reading
Mouse moved since last reading
Reserved

VBL interrupt

Button press interrupt

Mouse movement interrupt
Reserved

O—lN(DAU'IO'ﬁ\I

Il - 184 MOUSETEXT TOOLKIT

- 10N0N2

Ltapoft £l sidsT
Suggestion BOX. . - tuemizk
st i
We do our best to provide you with complete, bdg-freé Software and
documentation. With products as complex as compilers iand program-
ming utilities, this is difficult to do. If you find any bugs oﬁareas where the
documentation is unclear, please let us know. We will dd our best to
correct the problem in the next revision. We would also like to hear from
you if have any comments or suggestions regarding ou!“pf?jd({gré
Cochd vinl -
To help us better understand your comments please use the foljowing
form in your correspondence and mail it to: Kyan Software fhé15
1850 Union Street #183, San Francisco, CA 94423, . i bolsadl -

Ly o ets 2alyd

Name , b SR AR
Address T LZooin anl
City State P
Telephone: ~ LEasTT
(day) (evening) ALl
Kind of Problem Software Description
___Software Bug Product Name
___Documentation Error Version No.
___Suggestions Date Purchased
__ Other
Kyan Software Products You Use ’
__Kyan Pascal __Kyan Macro Assembler/Linker
__ System. Utilities Toolkit __Advanced Graphics Toolkit~ -
___MouseText Toolkit __MouseGraphics Toolkit
__TurtleGraphics Toolkit __ Other

Your Hardware Configuration
Type/Model of Computer
How many and what kind of disk drives
What is your screen capability: __ 40 Column ___ 80 Column

How much RAM? K (what kind of RAM Board?)
What kind of printer and interface card do you use?

What kind of modem?
Other information about your computer system:

What do' you use .this software for?
— Education (¢ ama __ teather __student)
___Hobby - C Y
Pgtessmnal Software Development

:’mblem Déscriphon (if appropriate, please include a disk or program
sting)

Suggestions

MT 8605A

